Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Egypt Heart J ; 76(1): 64, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789885

RESUMEN

BACKGROUND: Myocarditis is a significant health threat today, with infectious agents being the most common cause. Accurate diagnosis of the etiology of infectious myocarditis is crucial for effective treatment. MAIN BODY: Infectious myocarditis can be caused by viruses, prokaryotes, parasites, and fungi. Viral infections are typically the primary cause. However, some rare opportunistic pathogens can also damage heart muscle cells in patients with immunodeficiencies, neoplasms and those who have undergone heart surgery. CONCLUSIONS: This article reviews research on common and rare pathogens of infectious myocarditis, emphasizing the complexity of its etiology, with the aim of helping clinicians make an accurate diagnosis of infectious myocarditis.

2.
J Med Virol ; 95(1): e28207, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36217880

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) have prolonged coronavirus disease 2019 (COVID-19) pandemic by escaping pre-existing immunity acquired by natural infection or vaccination. Elucidation of VOCs' mutation trends and evasion of neutralization is required to update current control measures. Mutations and the prevalence of VOCs were analyzed in the global immunization coverage rate context. Lentivirus-based pseudovirus neutralization analysis platforms for SARS-CoV-2 prototype strain (PS) and VOCs, containing Alpha, Beta, Gamma, Delta, and Omicron, were constructed based on the spike protein of each variant and HEK 293T cell line expressing the human angiotensin-converting enzyme 2 (hACE2) receptor on the surface, and an enhanced green fluorescent protein reporter. Serum samples from 65 convalescent individuals and 20 WIBP-CorV vaccine recipients and four therapeutic monoclonal antibodies (mAbs) namely imdevimab, casirivimab, bamlanivimab, and etesevimab were used to evaluate the neutralization potency against the variants. Pseudovirus-based neutralization assay platforms for PS and VOCs were established, and multiplicity of infection (MOI) was the key factor influencing the assay result. Compared to PS, VOCs may enhance the infectivity of hACE2-293T cells. Except for Alpha, other VOCs escaped neutralization to varying degrees. Attributed to favorable and emerging mutations, the current pandemic Omicron variant of all VOCs demonstrated the most significant neutralization-escaping ability to the sera and mAbs. Compared with the PS pseudovirus, Omicron had 15.7- and 3.71-fold decreases in the NT50 value (the highest serum dilution corresponding to a neutralization rate of 50%); and correspondingly, 90% and 43% of immunization or convalescent serum samples lost their neutralizing activity against the Omicron variant, respectively. Therefore, SARS-CoV-2 has evolved persistently with a strong ability to escape neutralization and prevailing against the established immune barrier. Our findings provide important clues to controlling the COVID-19 pandemic caused by new variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/prevención & control , Sueroterapia para COVID-19 , Pandemias , Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética
3.
J Adv Res ; 36: 133-145, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35116173

RESUMEN

Introduction: The COVID-19 global pandemic is far from ending. There is an urgent need to identify applicable biomarkers for early predicting the outcome of COVID-19. Growing evidences have revealed that SARS-CoV-2 specific antibodies evolved with disease progression and severity in COIVD-19 patients. Objectives: We assumed that antibodies may serve as biomarkers for predicting the clinical outcome of hospitalized COVID-19 patients on admission. Methods: By taking advantage of a newly developed SARS-CoV-2 proteome microarray, we surveyed IgG responses against 20 proteins of SARS-CoV-2 in 1034 hospitalized COVID-19 patients on admission and followed till 66 days. The microarray results were further correlated with clinical information, laboratory test results and patient outcomes. Cox proportional hazards model was used to explore the association between SARS-CoV-2 specific antibodies and COVID-19 mortality. Results: Nonsurvivors (n = 955) induced higher levels of IgG responses against most of non-structural proteins than survivors (n = 79) on admission. In particular, the magnitude of IgG antibodies against 8 non-structural proteins (NSP1, NSP4, NSP7, NSP8, NSP9, NSP10, RdRp, and NSP14) and 2 accessory proteins (ORF3b and ORF9b) possessed significant predictive power for patient death, even after further adjustments for demographics, comorbidities, and common laboratory biomarkers for disease severity (all with p trend < 0.05). Additionally, IgG responses to all of these 10 non-structural/accessory proteins were also associated with the severity of disease, and differential kinetics and serum positive rate of these IgG responses were confirmed in COVID-19 patients of varying severities within 20 days after symptoms onset. The area under curves (AUCs) for these IgG responses, determined by computational cross-validations, were between 0.62 and 0.71. Conclusions: Our findings might have important implications for improving clinical management of COVID-19 patients.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , SARS-CoV-2 , Índice de Severidad de la Enfermedad
4.
Allergy ; 77(2): 619-632, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706102

RESUMEN

BACKGROUND: Mycobacterium bovis bacillus Calmette-Guérin (BCG) is an attenuated live vaccine that provides insufficient protection against tuberculosis (TB), the underlying mechanisms for which remain unknown. Assuming that the BCG vaccine inherits immune evasive strategies from virulent parent M. bovis strains, we aimed to identify the associated genes and assess their effects on the vaccine efficacy. METHODS: Three genes, BCG_3174, BCG_1782, and BCG_2432c, associated with immune evasion were first identified via bioinformatics analysis and then confirmed in the genome of M. bovis and 12 commercial BCG vaccine substrains using Polymerase Chain Reaction (PCR) and DNA sequencing. These genes were disrupted to develop mutant strains, and their effects on autophagy and their protective efficacy were further compared with the BCG vaccine in vitro and in vivo. RESULTS: Of the three identified genes, only the disruption of BCG_2432c, namely ΔBCG_2432c, conferred stronger protection against intranasal TB in vaccinated mice, when compared with the BCG vaccine. ΔBCG_2432c showed a stronger ability to trigger intracellular ROS-mediated complete autophagic flux in infected THP-1 cells that resulted in higher antigen presentation. The improved protection could be attributed to early and increased IFN-γ+ CD4+ TEM and IL-2+ CD4+ TCM cells in the spleens and lungs of ΔBCG_2432c-vaccinated mice. CONCLUSIONS: The insufficient efficacy of the BCG vaccine is attributable to the important autophagy-inhibition gene BCG_2432c that blocks the autophagosome-lysosome pathway of antigen presentation. ΔBCG_2432c provides a promising platform to either replace the current BCG vaccine or develop vaccines that are more effective against TB.


Asunto(s)
Mycobacterium bovis , Mycobacterium tuberculosis , Tuberculosis , Animales , Autofagia , Vacuna BCG , Humanos , Ratones , Mycobacterium bovis/genética , Mycobacterium tuberculosis/genética , Tuberculosis/prevención & control
5.
Curr Med Sci ; 41(6): 1081-1086, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34741251

RESUMEN

OBJECTIVE: The ongoing COVID-19 pandemic warrants accelerated efforts to test vaccine candidates. To explore the influencing factors on vaccine-induced effects, antibody responses to an inactivated SARS-CoV-2 vaccine in healthy individuals who were not previously infected by COVID-19 were assessed. METHODS: All subjects aged 18-60 years who did not have SARS-CoV-2 infection at the time of screening from June 19, 2021, to July 02, 2021, were approached for inclusion. All participants received two doses of inactivated SARS-CoV-2 vaccine. Serum IgM and IgG antibodies were detected using a commercial kit after the second dose of vaccination. A positive result was defined as 10 AU/mL or more and a negative result as less than 10 AU/mL. This retrospective study included 97 infection-naïve individuals (mean age 35.6 years; 37.1% male, 62.9% female). RESULTS: The seropositive rates of IgM and IgG antibody responses elicited after the second dose of inactivated SARS-CoV-2 vaccine were 3.1% and 74.2%, respectively. IgG antibody levels were significantly higher than IgM levels (P<0.0001). Sex had no effect on IgM and IgG antibody response after the second dose. The mean anti-IgG level in older persons (⩾42 years) was significantly lower than that of younger recipients. There was a significantly lower antibody level at > 42 days compared to that at 0-20 days (P<0.05) and 21-31 days (P<0.05) after the second dose. CONCLUSION: IgG antibody response could be induced by inactivated SARS-CoV-2 vaccine in healthy individuals (>18 years), which can be influenced by age and detection time after the second dose of vaccination.


Asunto(s)
Anticuerpos Antivirales/sangre , Vacunas contra la COVID-19/farmacología , COVID-19/inmunología , COVID-19/prevención & control , SARS-CoV-2/inmunología , Vacunas de Productos Inactivados/farmacología , Adolescente , Adulto , Factores de Edad , COVID-19/epidemiología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , China/epidemiología , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Pandemias , Estudios Retrospectivos , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Adulto Joven
6.
Genomics Proteomics Bioinformatics ; 19(5): 669-678, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34748989

RESUMEN

Coronavirus disease 2019 (COVID-19), which is caused by SARS-CoV-2, varies with regard to symptoms and mortality rates among populations. Humoral immunity plays critical roles in SARS-CoV-2 infection and recovery from COVID-19. However, differences in immune responses and clinical features among COVID-19 patients remain largely unknown. Here, we report a database for COVID-19-specific IgG/IgM immune responses and clinical parameters (named COVID-ONE-hi). COVID-ONE-hi is based on the data that contain the IgG/IgM responses to 24 full-length/truncated proteins corresponding to 20 of 28 known SARS-CoV-2 proteins and 199 spike protein peptides against 2360 serum samples collected from 783 COVID-19 patients. In addition, 96 clinical parameters for the 2360 serum samples and basic information for the 783 patients are integrated into the database. Furthermore, COVID-ONE-hi provides a dashboard for defining samples and a one-click analysis pipeline for a single group or paired groups. A set of samples of interest is easily defined by adjusting the scale bars of a variety of parameters. After the "START" button is clicked, one can readily obtain a comprehensive analysis report for further interpretation. COVID-ONE-hi is freely available at www.COVID-ONE.cn.


Asunto(s)
COVID-19 , Anticuerpos Antivirales , Humanos , Inmunidad Humoral , Inmunoglobulina G , Inmunoglobulina M , SARS-CoV-2
7.
J Immunol Res ; 2021: 9822706, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34712742

RESUMEN

BACKGROUND: Neutralizing antibody (nAb) response is generated following infection or immunization and plays an important role in the protection against a broad of viral infections. The role of nAb during clinical progression of coronavirus disease 2019 (COVID-19) remains little known. METHODS: 123 COVID-19 patients during hospitalization in Tongji Hospital were involved in this retrospective study. The patients were grouped based on the severity and outcome. The nAb responses of 194 serum samples were collected from these patients within an investigation period of 60 days after the onset of symptoms and detected by a pseudotyped virus neutralization assay. The detail data about onset time, disease severity and laboratory biomarkers, treatment, and clinical outcome of these participants were obtained from electronic medical records. The relationship of longitudinal nAb changes with each clinical data was further assessed. RESULTS: The nAb response in COVID-19 patients evidently experienced three consecutive stages, namely, rising, stationary, and declining periods. Patients with different severity and outcome showed differential dynamics of the nAb response over the course of disease. During the stationary phase (from 20 to 40 days after symptoms onset), all patients evolved nAb responses. In particular, high levels of nAb were elicited in severe and critical patients and older patients (≥60 years old). More importantly, critical but deceased COVID-19 patients showed high levels of several proinflammation cytokines, such as IL-2R, IL-8, and IL-6, and anti-inflammatory cytokine IL-10 in vivo, which resulted in lymphopenia, multiple organ failure, and the rapidly decreased nAb response. CONCLUSION: Our results indicate that nAb plays a crucial role in preventing the progression and deterioration of COVID-19, which has important implications for improving clinical management and developing effective interventions.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/inmunología , SARS-CoV-2/inmunología , Adulto , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Biomarcadores/sangre , COVID-19/patología , Citocinas/sangre , Femenino , Humanos , Linfopenia/sangre , Linfopenia/inmunología , Masculino , Persona de Mediana Edad , Pruebas de Neutralización , Estudios Retrospectivos , Índice de Severidad de la Enfermedad
8.
Cell Rep ; 36(2): 109391, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34242574

RESUMEN

The immunogenicity of the SARS-CoV-2 proteome is largely unknown, especially for non-structural proteins and accessory proteins. In this study, we collect 2,360 COVID-19 sera and 601 control sera. We analyze these sera on a protein microarray with 20 proteins of SARS-CoV-2, building an antibody response landscape for immunoglobulin (Ig)G and IgM. Non-structural proteins and accessory proteins NSP1, NSP7, NSP8, RdRp, ORF3b, and ORF9b elicit prevalent IgG responses. The IgG patterns and dynamics of non-structural/accessory proteins are different from those of the S and N proteins. The IgG responses against these six proteins are associated with disease severity and clinical outcome, and they decline sharply about 20 days after symptom onset. In non-survivors, a sharp decrease of IgG antibodies against S1 and N proteins before death is observed. The global antibody responses to non-structural/accessory proteins revealed here may facilitate a deeper understanding of SARS-CoV-2 immunology.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Proteínas no Estructurales Virales/inmunología , Proteínas Reguladoras y Accesorias Virales/inmunología , Adulto , Anciano , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Humanos , Inmunoglobulina G/inmunología , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad , Análisis por Matrices de Proteínas
9.
Cell Rep ; 34(13): 108915, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33761319

RESUMEN

To fully decipher the immunogenicity of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Spike protein, it is essential to assess which part is highly immunogenic in a systematic way. We generate a linear epitope landscape of the Spike protein by analyzing the serum immunoglobulin G (IgG) response of 1,051 coronavirus disease 2019 (COVID-19) patients with a peptide microarray. We reveal two regions rich in linear epitopes, i.e., C-terminal domain (CTD) and a region close to the S2' cleavage site and fusion peptide. Unexpectedly, we find that the receptor binding domain (RBD) lacks linear epitope. We reveal that the number of responsive peptides is highly variable among patients and correlates with disease severity. Some peptides are moderately associated with severity and clinical outcome. By immunizing mice, we obtain linear-epitope-specific antibodies; however, no significant neutralizing activity against the authentic virus is observed for these antibodies. This landscape will facilitate our understanding of SARS-CoV-2-specific humoral responses and might be useful for vaccine refinement.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/epidemiología , COVID-19/genética , China/epidemiología , Modelos Animales de Enfermedad , Mapeo Epitopo/métodos , Epítopos/inmunología , Femenino , Humanos , Inmunoglobulina G/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo
10.
Cell Mol Immunol ; 18(3): 621-631, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33483707

RESUMEN

Serological tests play an essential role in monitoring and combating the COVID-19 pandemic. Recombinant spike protein (S protein), especially the S1 protein, is one of the major reagents used for serological tests. However, the high cost of S protein production and possible cross-reactivity with other human coronaviruses pose unavoidable challenges. By taking advantage of a peptide microarray with full spike protein coverage, we analyzed 2,434 sera from 858 COVID-19 patients, 63 asymptomatic patients and 610 controls collected from multiple clinical centers. Based on the results, we identified several S protein-derived 12-mer peptides that have high diagnostic performance. In particular, for monitoring the IgG response, one peptide (aa 1148-1159 or S2-78) exhibited a sensitivity (95.5%, 95% CI 93.7-96.9%) and specificity (96.7%, 95% CI 94.8-98.0%) comparable to those of the S1 protein for the detection of both symptomatic and asymptomatic COVID-19 cases. Furthermore, the diagnostic performance of the S2-78 (aa 1148-1159) IgG was successfully validated by ELISA in an independent sample cohort. A panel of four peptides, S1-93 (aa 553-564), S1-97 (aa 577-588), S1-101 (aa 601-612) and S1-105 (aa 625-636), that likely will avoid potential cross-reactivity with sera from patients infected by other coronaviruses was constructed. The peptides identified in this study may be applied independently or in combination with the S1 protein for accurate, affordable, and accessible COVID-19 diagnosis.


Asunto(s)
Anticuerpos Antivirales/sangre , Prueba Serológica para COVID-19 , COVID-19/sangre , Inmunoglobulina G/sangre , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/química , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Péptidos/química , Glicoproteína de la Espiga del Coronavirus/metabolismo
11.
Allergy ; 76(2): 551-561, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33040337

RESUMEN

BACKGROUND: The missing asymptomatic COVID-19 infections have been overlooked because of the imperfect sensitivity of the nucleic acid testing (NAT). Globally understanding the humoral immunity in asymptomatic carriers will provide scientific knowledge for developing serological tests, improving early identification, and implementing more rational control strategies against the pandemic. MEASURE: Utilizing both NAT and commercial kits for serum IgM and IgG antibodies, we extensively screened 11 766 epidemiologically suspected individuals on enrollment and 63 asymptomatic individuals were detected and recruited. Sixty-three healthy individuals and 51 mild patients without any preexisting conditions were set as controls. Serum IgM and IgG profiles were further probed using a SARS-CoV-2 proteome microarray, and neutralizing antibody was detected by a pseudotyped virus neutralization assay system. The dynamics of antibodies were analyzed with exposure time or symptoms onset. RESULTS: A combination test of NAT and serological testing for IgM antibody discovered 55.5% of the total of 63 asymptomatic infections, which significantly raises the detection sensitivity when compared with the NAT alone (19%). Serum proteome microarray analysis demonstrated that asymptomatics mainly produced IgM and IgG antibodies against S1 and N proteins out of 20 proteins of SARS-CoV-2. Different from strong and persistent N-specific antibodies, S1-specific IgM responses, which evolved in asymptomatic individuals as early as the seventh day after exposure, peaked on days from 17 days to 25 days, and then disappeared in two months, might be used as an early diagnostic biomarker. 11.8% (6/51) mild patients and 38.1% (24/63) asymptomatic individuals did not produce neutralizing antibody. In particular, neutralizing antibody in asymptomatics gradually vanished in two months. CONCLUSION: Our findings might have important implications for the definition of asymptomatic COVID-19 infections, diagnosis, serological survey, public health, and immunization strategies.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , Portador Sano/inmunología , SARS-CoV-2/inmunología , Adulto , Anciano , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/diagnóstico , Prueba de COVID-19/métodos , Portador Sano/sangre , Portador Sano/diagnóstico , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Inmunoglobulina M/sangre , Inmunoglobulina M/inmunología , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...