Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
1.
ACS Synth Biol ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38904157

RESUMEN

The Escherichia coli leucyl-tRNA synthetase (EcLeuRS)/tRNAEcLeu pair has been engineered to genetically encode a structurally diverse group of enabling noncanonical amino acids (ncAAs) in eukaryotes, including those with bioconjugation handles, environment-sensitive fluorophores, photocaged amino acids, and native post-translational modifications. However, the scope of this toolbox in mammalian cells is limited by the poor activity of tRNAEcLeu. Here, we overcome this limitation by evolving tRNAEcLeu directly in mammalian cells by using a virus-assisted selection scheme. This directed evolution platform was optimized for higher throughput such that the entire acceptor stem of tRNAEcLeu could be simultaneously engineered, which resulted in the identification of several variants with remarkably improved efficiency for incorporating a wide range of ncAAs. The advantage of the evolved leucyl tRNAs was demonstrated by expressing ncAA mutants in mammalian cells that were challenging to express before using the wild-type tRNAEcLeu, by creating viral vectors that facilitated ncAA mutagenesis at a significantly lower dose and by creating more efficient mammalian cell lines stably expressing the ncAA-incorporation machinery.

2.
J Phys Chem B ; 125(22): 5722-5739, 2021 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-34060838

RESUMEN

Poly(aspartic acid) (PAA) is a common water-soluble polycarboxylate used in a broad range of applications. PAA biodegradation and environmental assimilation were first identified in river water bacterial strains, Sphingomonas sp. KT-1 and Pedobacter sp. KP-2. Within Sphingomonas sp. KT-1, PahZ1KT-1 cleaves ß-amide linkages to oligo(aspartic acid) and then is degraded by PahZ2KT-1. Recently, we reported the first structure for PahZ1KT-1. Here, we report novel structures for PahZ2KT-1 bound to either Gd3+/Sm3+ or Zn2+ cations in a dimeric state consistent with M28 metallopeptidase family members. PahZ2KT-1 monomers include a dimerization domain and a catalytic domain with dual Zn2+ cations. MD methods predict the putative substrate binding site to span across the dimerization and catalytic domains, where NaCl promotes the transition from an open conformation to a closed conformation that positions the substrate adjacent to catalytic zinc ions. Structural knowledge of PahZ1KT-1 and PahZ2KT-1 will allow for protein engineering endeavors to develop novel biodegradation reagents.


Asunto(s)
Sphingomonas , Cristalografía por Rayos X , Hidrólisis , Conformación Molecular , Nitrocompuestos , Péptidos , Quinazolinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...