Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Immunohorizons ; 7(3): 235-242, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36951874

RESUMEN

The E3 ubiquitin ligase cullin 3 (Cul3) is critical for invariant NKT (iNKT) cell development, as iNKT cells lacking Cul3 accumulate in the immature developmental stages. However, the mechanisms by which Cul3 mediates iNKT cell development remain unknown. In this study, we investigated the role of Cul3 in both immature and mature thymic iNKT cells using a mouse model with a T cell-specific deletion of Cul3. We found that mature iNKT cells lacking Cul3 proliferated and died more than wild-type cells did. These cells also displayed increased glucose metabolism and autophagy. Interestingly, we found that tight regulation of iron homeostasis is critical for iNKT cell development. Without Cul3, mature iNKT cells harbored higher levels of cytosolic iron, a phenotype associated with increased cell death. Taken together, our data suggest that Cul3 promotes iNKT cell development partially through intracellular iron homeostasis.


Asunto(s)
Células T Asesinas Naturales , Animales , Ratones , Diferenciación Celular/genética , Células T Asesinas Naturales/metabolismo , Ratones Noqueados , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Homeostasis
2.
Cell Rep ; 41(4): 111516, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36288696

RESUMEN

Natural killer T (NKT) cells operate distinctly different metabolic programming from CD4 T cells, including a strict requirement for glutamine to regulate cell homeostasis. However, the underlying mechanisms remain unknown. Here, we report that at a steady state, NKT cells have higher glutamine levels than CD4 T cells and that NKT cells increase glutaminolysis on activation. Activated NKT cells use glutamine to fuel the tricarboxylic acid cycle and glutathione synthesis. In addition, glutamine-derived nitrogen enables protein glycosylation via the hexosamine biosynthesis pathway (HBP). Each of these branches of glutamine metabolism seems to be critical for NKT cell homeostasis and mitochondrial functions. Glutaminolysis and HBP differentially regulate interleukin-4 (IL-4) and interferon γ (IFNγ) production. Glutamine metabolism appears to be controlled by AMP-activated protein kinase (AMPK)-mammalian target of rapamycin complex 1 (mTORC1) signaling. These findings highlight a distinct metabolic requirement of NKT cells compared with CD4 T cells, which may have therapeutic implications in the treatment of certain nutrient-restricted diseases.


Asunto(s)
Células T Asesinas Naturales , Células T Asesinas Naturales/metabolismo , Interleucina-4/metabolismo , Glutamina/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Interferón gamma/metabolismo , Homeostasis , Hexosaminas/metabolismo , Fenotipo , Serina-Treonina Quinasas TOR/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nitrógeno/metabolismo , Glutatión/metabolismo
3.
Nat Commun ; 12(1): 4860, 2021 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-34381026

RESUMEN

Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.


Asunto(s)
Aspartato Aminotransferasa Citoplasmática/antagonistas & inhibidores , Ferroptosis , Neoplasias Pancreáticas/metabolismo , Animales , Antioxidantes/farmacología , Aspartato Aminotransferasa Citoplasmática/genética , Aspartato Aminotransferasa Citoplasmática/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular/efectos de los fármacos , Cistina/metabolismo , Ferroptosis/efectos de los fármacos , Glutatión/biosíntesis , Humanos , Hierro/metabolismo , Ratones , Mitocondrias/metabolismo , Neoplasias Pancreáticas/patología
4.
Immunometabolism ; 3(2)2021.
Artículo en Inglés | MEDLINE | ID: mdl-33717605

RESUMEN

Cellular metabolism is critical for generating energy and macromolecules for cell growth and survival. In recent years, the importance of metabolism in mediating T cell differentiation, proliferation, and function has been a hot topic of investigation. However, very little is known about metabolic regulation in invariant natural killer T (iNKT) cells. In this viewpoint, we will discuss what is currently known about immunometabolism in iNKT cells and how these findings relate to CD4 T cells.

5.
J Immunol ; 204(7): 1708-1713, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32122995

RESUMEN

Iron has long been established as a critical mediator of T cell development and proliferation. However, the mechanisms by which iron controls CD4 T cell activation and expansion remain poorly understood. In this study, we show that stimulation of CD4 T cells from C57BL/6 mice not only decreases total and labile iron levels but also leads to changes in the expression of iron homeostatic machinery. Additionally, restraining iron availability in vitro severely inhibited CD4 T cell proliferation and cell cycle progression. Although modulating cellular iron levels increased IL-2 production by activated T lymphocytes, CD25 expression and pSTAT5 levels were decreased, indicating that iron is necessary for IL-2R-mediated signaling. We also found that iron deprivation during T cell stimulation negatively impacts mitochondrial function, which can be reversed by iron supplementation. In all, we show that iron contributes to activation-induced T cell expansion by positively regulating IL-2R signaling and mitochondrial function.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular/fisiología , Hierro/inmunología , Mitocondrias/inmunología , Receptores de Interleucina-2/inmunología , Animales , Femenino , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Transducción de Señal/inmunología , Linfocitos T Reguladores/inmunología
6.
Proc Natl Acad Sci U S A ; 116(15): 7439-7448, 2019 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-30910955

RESUMEN

Cellular metabolism and signaling pathways are key regulators to determine conventional T cell fate and function, but little is understood about the role of cell metabolism for natural killer T (NKT) cell survival, proliferation, and function. We found that NKT cells operate distinct metabolic programming from CD4 T cells. NKT cells are less efficient in glucose uptake than CD4 T cells with or without activation. Gene-expression data revealed that, in NKT cells, glucose is preferentially metabolized by the pentose phosphate pathway and mitochondria, as opposed to being converted into lactate. In fact, glucose is essential for the effector functions of NKT cells and a high lactate environment is detrimental for NKT cell survival and proliferation. Increased glucose uptake and IFN-γ expression in NKT cells is inversely correlated with bacterial loads in response to bacterial infection, further supporting the significance of glucose metabolism for NKT cell function. We also found that promyelocytic leukemia zinc finger seemed to play a role in regulating NKT cells' glucose metabolism. Overall, our study reveals that NKT cells use distinct arms of glucose metabolism for their survival and function.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Proliferación Celular , Mitocondrias/metabolismo , Células T Asesinas Naturales/inmunología , Fosforilación Oxidativa , Vía de Pentosa Fosfato/inmunología , Animales , Linfocitos T CD4-Positivos/citología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Glucosa/genética , Glucosa/inmunología , Ratones , Ratones Noqueados , Mitocondrias/genética , Células T Asesinas Naturales/citología , Vía de Pentosa Fosfato/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/genética , Proteína de la Leucemia Promielocítica con Dedos de Zinc/inmunología
7.
Immune Netw ; 18(1): e14, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29503744

RESUMEN

T lymphocytes rely on several metabolic processes to produce the high amounts of energy and metabolites needed to drive clonal expansion and the development of effector functions. However, many of these pathways result in the production of reactive oxygen species (ROS), which have canonically been thought of as cytotoxic agents due to their ability to damage DNA and other subcellular structures. Interestingly, ROS has recently emerged as a critical second messenger for T cell receptor signaling and T cell activation, but the sensitivity of different T cell subsets to ROS varies. Therefore, the tight regulation of ROS production by cellular antioxidant pathways is critical to maintaining proper signal transduction without compromising the integrity of the cell. This review intends to detail the common metabolic sources of intracellular ROS and the mechanisms by which ROS contributes to the development of T cell-mediated immunity. The regulation of ROS levels by the glutathione pathway and the Nrf2-Keap1-Cul3 trimeric complex will be discussed. Finally, T cell-mediated autoimmune diseases exacerbated by defects in ROS regulation will be further examined in order to identify potential therapeutic interventions for these disorders.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA