Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Eur J Med Res ; 29(1): 383, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39054495

RESUMEN

BACKGROUND: Tuberculosis spondylitis (TS), commonly known as Pott's disease, is a severe type of skeletal tuberculosis that typically requires surgical treatment. However, this treatment option has led to an increase in healthcare costs due to prolonged hospital stays (PLOS). Therefore, identifying risk factors associated with extended PLOS is necessary. In this research, we intended to develop an interpretable machine learning model that could predict extended PLOS, which can provide valuable insights for treatments and a web-based application was implemented. METHODS: We obtained patient data from the spine surgery department at our hospital. Extended postoperative length of stay (PLOS) refers to a hospitalization duration equal to or exceeding the 75th percentile following spine surgery. To identify relevant variables, we employed several approaches, such as the least absolute shrinkage and selection operator (LASSO), recursive feature elimination (RFE) based on support vector machine classification (SVC), correlation analysis, and permutation importance value. Several models using implemented and some of them are ensembled using soft voting techniques. Models were constructed using grid search with nested cross-validation. The performance of each algorithm was assessed through various metrics, including the AUC value (area under the curve of receiver operating characteristics) and the Brier Score. Model interpretation involved utilizing methods such as Shapley additive explanations (SHAP), the Gini Impurity Index, permutation importance, and local interpretable model-agnostic explanations (LIME). Furthermore, to facilitate the practical application of the model, a web-based interface was developed and deployed. RESULTS: The study included a cohort of 580 patients and 11 features include (CRP, transfusions, infusion volume, blood loss, X-ray bone bridge, X-ray osteophyte, CT-vertebral destruction, CT-paravertebral abscess, MRI-paravertebral abscess, MRI-epidural abscess, postoperative drainage) were selected. Most of the classifiers showed better performance, where the XGBoost model has a higher AUC value (0.86) and lower Brier Score (0.126). The XGBoost model was chosen as the optimal model. The results obtained from the calibration and decision curve analysis (DCA) plots demonstrate that XGBoost has achieved promising performance. After conducting tenfold cross-validation, the XGBoost model demonstrated a mean AUC of 0.85 ± 0.09. SHAP and LIME were used to display the variables' contributions to the predicted value. The stacked bar plots indicated that infusion volume was the primary contributor, as determined by Gini, permutation importance (PFI), and the LIME algorithm. CONCLUSIONS: Our methods not only effectively predicted extended PLOS but also identified risk factors that can be utilized for future treatments. The XGBoost model developed in this study is easily accessible through the deployed web application and can aid in clinical research.


Asunto(s)
Tiempo de Internación , Aprendizaje Automático , Tuberculosis de la Columna Vertebral , Humanos , Masculino , Femenino , Tuberculosis de la Columna Vertebral/cirugía , Persona de Mediana Edad , Inteligencia Artificial , Adulto , Espondilitis/cirugía , Espondilitis/microbiología , Algoritmos
2.
Acad Radiol ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508934

RESUMEN

RATIONALE AND OBJECTIVES: Medulloblastoma (MB) and Ependymoma (EM) in children, share similarities in age group, tumor location, and clinical presentation. Distinguishing between them through clinical diagnosis is challenging. This study aims to explore the effectiveness of using radiomics and machine learning on multiparametric magnetic resonance imaging (MRI) to differentiate between MB and EM and validate its diagnostic ability with an external set. MATERIALS AND METHODS: Axial T2 weighted image (T2WI) and contrast-enhanced T1weighted image (CE-T1WI) MRI sequences of 135 patients from two centers were collected as train/test sets. Volume of interest (VOI) was manually delineated by an experienced neuroradiologist, supervised by a senior. Feature selection analysis and the least absolute shrinkage and selection operator (LASSO) algorithm identified valuable features, and Shapley additive explanations (SHAP) evaluated their significance. Five machine-learning classifiers-extreme gradient boosting (XGBoost), Bernoulli naive Bayes (Bernoulli NB), Logistic Regression (LR), support vector machine (SVM), linear support vector machine (Linear SVC) classifiers were built based on T2WI (T2 model), CE-T1WI (T1 model), and T1 + T2WI (T1 + T2 model). A human expert diagnosis was developed and corrected by senior radiologists. External validation was performed at Sun Yat-Sen University Cancer Center. RESULTS: 31 valuable features were extracted from T2WI and CE-T1WI. XGBoost demonstrated the highest performance with an area under the curve (AUC) of 0.92 on the test set and maintained an AUC of 0.80 during external validation. For the T1 model, XGBoost achieved the highest AUC of 0.85 on the test set and the highest accuracy of 0.71 on the external validation set. In the T2 model, XGBoost achieved the highest AUC of 0.86 on the test set and the highest accuracy of 0.82 on the external validation set. The human expert diagnosis had an AUC of 0.66 on the test set and 0.69 on the external validation set. The integrated T1 + T2 model achieved an AUC of 0.92 on the test set, 0.80 on the external validation set, achieved the best performance. Overall, XGBoost consistently outperformed in different classification models. CONCLUSION: The combination of radiomics and machine learning on multiparametric MRI effectively distinguishes between MB and EM in childhood, surpassing human expert diagnosis in training and testing sets.

3.
Heliyon ; 10(1): e23584, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38173524

RESUMEN

Background: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are commonly seen spinal infectious diseases. Both types can lead to vertebral destruction, kyphosis, and long-term neurological deficits if not promptly diagnosed and treated. Therefore, accurately diagnosis is crucial for personalized therapy. Distinguishing between PS and BS in everyday clinical settings is challenging due to the similarity of their clinical symptoms and imaging features. Hence, this study aims to evaluate the effectiveness of a radiomics nomogram using magnetic resonance imaging (MRI) to accurately differentiate between the two types of spondylitis. Methods: Clinical and MRI data from 133 patients (2017-2022) with pathologically confirmed PS and BS (68 and 65 patients, respectively) were collected. We have divided patients into training and testing cohorts. In order to develop a clinical diagnostic model, logistic regression was utilized to fit a conventional clinical model (M1). Radiomics features were extracted from sagittal fat-suppressed T2-weighted imaging (FS-T2WI) sequence. The radiomics features were preprocessed, including scaling using Z-score and undergoing univariate analysis to eliminate redundant features. Furthermore, the Least Absolute Shrinkage and Selection Operator (LASSO) was employed to develop a radiomics score (M2). A composite model (M3) was created by combining M1 and M2. Subsequently, calibration and decision curves were generated to evaluate the nomogram's performance in both training and testing groups. The diagnostic performance of each model and the indication was assessed using the receiver operating curve (ROC) with its area under the curve (AUC). Finally, we used the SHapley Additive exPlanations (SHAP) model explanations technique to interpret the model result. Results: We have finally selected 9 significant features from sagittal FS-T2WI sequences. In the differential diagnosis of PS and BS, the AUC values of M1, M2, and M3 in the testing set were 0.795, 0.859, and 0.868. The composite model exhibited a high degree of concurrence with the ideal outcomes, as evidenced by the calibration curves. The nomogram's possible clinical application values were indicated by the decision curve analysis. By using SHAP values to represent prediction outcomes, our model's prediction results are more understandable. Conclusions: The implementation of a nomogram that integrates MRI and clinical data has the potential to significantly enhance the accuracy of discriminating between PS and BS within clinical settings.

4.
Eur J Med Res ; 28(1): 577, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071384

RESUMEN

BACKGROUND: Cerebral alveolar echinococcosis (CAE) and brain metastases (BM) share similar in locations and imaging appearance. However, they require distinct treatment approaches, with CAE typically treated with chemotherapy and surgery, while BM is managed with radiotherapy and targeted therapy for the primary malignancy. Accurate diagnosis is crucial due to the divergent treatment strategies. PURPOSE: This study aims to evaluate the effectiveness of radiomics and machine learning techniques based on magnetic resonance imaging (MRI) to differentiate between CAE and BM. METHODS: We retrospectively analyzed MRI images of 130 patients (30 CAE and 100 BM) from Xinjiang Medical University First Affiliated Hospital and The First People's Hospital of Kashi Prefecture, between January 2014 and December 2022. The dataset was divided into training (91 cases) and testing (39 cases) sets. Three dimensional tumors were segmented by radiologists from contrast-enhanced T1WI images on open resources software 3D Slicer. Features were extracted on Pyradiomics, further feature reduction was carried out using univariate analysis, correlation analysis, and least absolute shrinkage and selection operator (LASSO). Finally, we built five machine learning models, support vector machine, logistic regression, linear discrimination analysis, k-nearest neighbors classifier, and Gaussian naïve bias and evaluated their performance via several metrics including sensitivity (recall), specificity, positive predictive value (precision), negative predictive value, accuracy and the area under the curve (AUC). RESULTS: The area under curve (AUC) of support vector classifier (SVC), linear discrimination analysis (LDA), k-nearest neighbors (KNN), and gaussian naïve bias (NB) algorithms in training (testing) sets are 0.99 (0.94), 1.00 (0.87), 0.98 (0.92), 0.97 (0.97), and 0.98 (0.93), respectively. Nested cross-validation demonstrated the robustness and generalizability of the models. Additionally, the calibration plot and decision curve analysis demonstrated the practical usefulness of these models in clinical practice, with lower bias toward different subgroups during decision-making. CONCLUSION: The combination of radiomics and machine learning approach based on contrast enhanced T1WI images could well distinguish CAE and BM. This approach holds promise in assisting doctors with accurate diagnosis and clinical decision-making.


Asunto(s)
Neoplasias Encefálicas , Equinococosis , Humanos , Estudios Retrospectivos , Equinococosis/diagnóstico por imagen , Neoplasias Encefálicas/diagnóstico por imagen
5.
J Inflamm Res ; 16: 5585-5600, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38034044

RESUMEN

Background: Pyogenic spondylitis (PS) and Brucella spondylitis (BS) are common spinal infections with similar manifestations, making their differentiation challenging. This study aimed to explore the potential of CT-based radiomics features combined with machine learning algorithms to differentiate PS from BS. Methods: This retrospective study involved the collection of clinical and radiological information from 138 patients diagnosed with either PS or BS in our hospital between January 2017 and December 2022, based on histopathology examination and/or germ isolations. The region of interest (ROI) was defined by two radiologists using a 3D Slicer open-source platform, utilizing blind analysis of sagittal CT images against histopathological examination results. PyRadiomics, a Python package, was utilized to extract ROI features. Several methods were performed to reduce the dimensionality of the extracted features. Machine learning algorithms were trained and evaluated using techniques like the area under the receiver operating characteristic curve (AUC; confusion matrix-related metrics, calibration plot, and decision curve analysis to assess their ability to differentiate PS from BS. Additionally, permutation feature importance (PFI; local interpretable model-agnostic explanations (LIME; and Shapley additive explanation (SHAP) techniques were utilized to gain insights into the interpretabilities of the models that are otherwise considered opaque black-boxes. Results: A total of 15 radiomics features were screened during the analysis. The AUC value and Brier score of best the model were 0.88 and 0.13, respectively. The calibration plot and decision curve analysis displayed higher clinical efficiency in the differential diagnosis. According to the interpretation results, the most impactful features on the model output were wavelet LHL small dependence low gray-level emphasis (GLDN). Conclusion: The CT-based radiomics models that we developed have proven to be useful in reliably differentiating between PS and BS at an early stage and can provide a reliable explanation for the classification results.

6.
BMC Musculoskelet Disord ; 24(1): 703, 2023 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-37660009

RESUMEN

BACKGROUND: Lumber spinal stenosis (LSS) is the increasingly reason for spine surgery for elder patients since China is facing the fastest-growing aging population. The aim of this research was to create a model to predict the probabilities of requiring a prolonged postoperative length of stay (PLOS) for lumbar spinal stenosis patients, minimizing the healthcare burden. METHODS: A total of 540 LSS patients were enrolled in this project. The outcome was a prolonged PLOS after spine surgery, defined as hospitalizations ≥ 75th percentile for PLOS, including the day of discharge. The least absolute shrinkage and selection operator (LASSO) was used to identify independent risk variables related to prolonged PLOS. Multivariable logistic regression analysis was utilized to generate a prediction model utilizing the variables employed in the LASSO approach. The receiver operating characteristic (ROC) curve's area under the curve (AUC) and the calibration curve's respective curves were used to further validate the model's calibration with predictability and discriminative capabilities. By using decision curve analysis, the resulting model's clinical effectiveness was assessed. RESULTS: Among 540 individuals, 344 had PLOS that was within the usual range of P75 (8 days), according to the interquartile range of PLOS, and 196 had PLOS that was above the normal range of P75 (prolonged PLOS). Four variables were incorporated into the predictive model, named: transfusion, operation duration, blood loss and involved spine segments. A great difference in clinical scores can be found between the two groups (P < 0.001). In the development set, the model's AUC for predicting prolonged PLOS was 0.812 (95% CI: 0.768-0.859), while in the validation set, it was 0.830 (95% CI: 0.753-0.881). The calibration plots for the probability showed coherence between the expected probability and the actual probability both in the development set and validation set respectively. When intervention was chosen at the potential threshold of 2%, analysis of the decision curve revealed that the model was more clinically effective. CONCLUSIONS: The individualized prediction nomogram incorporating five common clinical features for LSS patients undergoing surgery can be suitably used to smooth early identification and improve screening of patients at higher risk of prolonged PLOS and minimize health care.


Asunto(s)
Estenosis Espinal , Humanos , Anciano , Tiempo de Internación , Nomogramas , Hospitalización , Columna Vertebral
7.
Front Surg ; 9: 955761, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36684365

RESUMEN

Background: Tuberculous spondylitis (TS) and brucellar spondylitis (BS) are commonly observed in spinal infectious diseases, which are initially caused by bacteremia. BS is easily misdiagnosed as TS, especially in underdeveloped regions of northwestern China with less sensitive medical equipment. Nevertheless, a rapid and reliable diagnostic tool remains to be developed and a clinical diagnostic model to differentiate TS and BS using machine learning algorithms is of great significance. Methods: A total of 410 patients were included in this study. Independent factors to predict TS were selected by using the least absolute shrinkage and selection operator (LASSO) regression model, permutation feature importance, and multivariate logistic regression analysis. A TS risk prediction model was developed with six different machine learning algorithms. We used several metrics to evaluate the accuracy, calibration capability, and predictability of these models. The performance of the model with the best predictability was further verified with the area under the curve (AUC) of the receiver operating characteristic (ROC) curve and the calibration curve. The clinical performance of the final model was evaluated by decision curve analysis. Results: Six variables were incorporated in the final model, namely, pain severity, CRP, x-ray intervertebral disc height loss, x-ray endplate sclerosis, CT vertebral destruction, and MRI paravertebral abscess. The analysis of appraising six models revealed that the logistic regression model developed in the current study outperformed other methods in terms of sensitivity (0.88 ± 0.07) and accuracy (0.79 ± 0.07). The AUC of the logistic regression model predicting TS was 0.86 (95% CI, 0.81-0.90) in the training set and 0.86 (95% CI, 0.78-0.92) in the validation set. The decision curve analysis indicated that the logistic regression model displayed a higher clinical efficiency in the differential diagnosis. Conclusions: The logistic regression model developed in this study outperformed other methods. The logistic regression model demonstrated by a calculator exerts good discrimination and calibration capability and could be applicable in differentiating TS from BS in primary health care diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...