Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 15(51): 59246-59257, 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38102092

RESUMEN

This study introduces an innovative electrochemical sensor designed to detect glutamate using a nonenzymatic approach. The sensor utilizes a porous network metal-organic framework (Ni-MOF)-NiO-Ni-Carbon nanocomposite (PNM-NiO-Ni-Carbon) as an electrode modifier, which was synthesized and assessed for its effectiveness. Cyclic voltammetry measurements demonstrated that the PNM-NiO-Ni-Carbon nanocomposite, synthesized at 450 °C, displayed remarkable electrocatalytic activity for glutamate oxidation. The linear range for detection spanned from 5 to 960 µmol/L, and the sensor achieved a low detection limit of 320 nmol/L (S/N = 3), which was comparable to previously reported data. Moreover, the sensor exhibited high accuracy and favorable recovery rates when tested with real samples, thus, demonstrating its potential for rapid glutamate detection. The real samples were analyzed using both electrochemical and high-performance liquid chromatography methods, and the results obtained from the two methods did not differ significantly, validating the sensor's excellent practical performance. Based on our findings, the PNM-NiO-Ni-Carbon system exhibits potential for a wide range of biomedical applications.

2.
ACS Omega ; 3(5): 5038-5043, 2018 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-31458717

RESUMEN

Identifying and reducing the dominant recombination processes in perovskite solar cells is one of the major challenges for further device optimization. Here, we show that introducing a thin interlayer of poly(4-vinylpyridine) (PVP) between the perovskite film and the hole transport layer reduces nonradiative recombination. Employing such a PVP interlayer, we reach an open-circuit voltage of 1.20 V for the best devices and a stabilized efficiency of 20.7%. The beneficial effect of the PVP interlayer is proven by statistical analysis of various samples, many of those showing an open-circuit voltage larger than 1.17 V, and a 30 mV increase in average compared to unmodified samples. The reduced nonradiative recombination is proven by enhanced photo- and electroluminescence yields.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...