Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Appl Opt ; 63(12): 3237-3241, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38856472

RESUMEN

Polarization control is a major issue in topological quantum optics that limits reliable generation and transmission of quantum states. This study presents what we believe to be a novel topological photonic crystal design that provides topological protection for biphoton pairs for both TE and TM polarization. By well-designed cell configurations within the lattice, two topological boundaries emerge that can accommodate TM and TE modes at the same time. By adjusting the dispersion curves, we can further design nonlinear four-wave mixing processes within the topological photonic crystals and provide theoretical explanations for the entanglement of the dual-polarization biphoton states. Numerical results confirm the robust transport of entangled photon pairs, even when subjected to sharp bending. Moreover, combining the dual-polarization topological photonic crystal with a polarization beam splitter enables the preparation of polarization-encoded maximally entangled states. Our work exhibits significant potential for applications in robust optical quantum information processing and quantum secure communication.

2.
Opt Lett ; 49(3): 554-557, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38300057

RESUMEN

With the rich physical phenomena arising from non-Hermitian systems, the non-Hermitian skin effect (NHSE) has become a current research hotspot. Nowadays, the corner skin effect based on non-reciprocal photonic crystals has been proposed. Considering the complexity of realizing non-reciprocity, the corner skin effect based on reciprocal photonic crystals is well worth investigating. In this Letter, a non-Hermitian reciprocal geometry-dependent corner skin effect based on two-dimensional photonic crystals is presented, which is manifested as the distribution of eigenstates on the corners of a particular geometry by applying open boundary conditions in both directions of photonic crystals. For the better application of the NHSE in the future, such as highly sensitive sensors and lasers, a new, to the best of our knowledge, method that can effectively enhance the performance of the NHSE in photonic crystals is proposed. The method introduces both gain and loss in an ideal photonic crystal to enhance the non-Hermitian specificity of the system, which improves the performance of the non-Hermitian corner skin effect of photonic crystals by 64.5%. Furthermore, this geometry-dependent corner skin effect is corroborated with the spectral topology.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...