Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Anim Sci Biotechnol ; 15(1): 86, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38858724

RESUMEN

BACKGROUND: Previous studies have shown that the vitrification of metaphase II (MII) oocytes significantly represses their developmental potential. Abnormally increased oxidative stress is the probable factor; however, the underlying mechanism remains unclear. The walnut-derived peptide TW-7 was initially isolated and purified from walnut protein hydrolysate. Accumulating evidences implied that TW-7 was a powerful antioxidant, while its prospective application in oocyte cryopreservation has not been reported. RESULT: Here, we found that parthenogenetic activation (PA) zygotes derived from vitrified MII oocytes showed elevated ROS level and delayed progression of pronucleus formation. Addition of 25 µmol/L TW-7 in warming, recovery, PA, and embryo culture medium could alleviate oxidative stress in PA zygotes from vitrified mouse MII oocytes, furtherly increase proteins related to histone lactylation such as LDHA, LDHB, and EP300 and finally improve histone lactylation in PA zygotes. The elevated histone lactylation facilitated the expression of minor zygotic genome activation (ZGA) genes and preimplantation embryo development. CONCLUSIONS: Our findings revealed the mechanism of oxidative stress inducing repressed development of PA embryos from vitrified mouse MII oocytes and found a potent and easy-obtained short peptide that could significantly rescue the decreased developmental potential of vitrified oocytes, which would potentially contribute to reproductive medicine, animal protection, and breeding.

2.
Am J Reprod Immunol ; 91(4): e13847, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38661639

RESUMEN

PROBLEM: Polycystic ovary syndrome (PCOS), a prevalent endocrine-metabolic disorder, presents considerable therapeutic challenges due to its complex and elusive pathophysiology. METHOD OF STUDY: We employed three machine learning algorithms to identify potential biomarkers within a training dataset, comprising GSE138518, GSE155489, and GSE193123. The diagnostic accuracy of these biomarkers was rigorously evaluated using a validation dataset using area under the curve (AUC) metrics. Further validation in clinical samples was conducted using PCR and immunofluorescence techniques. Additionally, we investigate the complex interplay among immune cells in PCOS using CIBERSORT to uncover the relationships between the identified biomarkers and various immune cell types. RESULTS: Our analysis identified ACSS2, LPIN1, and NR4A1 as key mitochondria-related biomarkers associated with PCOS. A notable difference was observed in the immune microenvironment between PCOS patients and healthy controls. In particular, LPIN1 exhibited a positive correlation with resting mast cells, whereas NR4A1 demonstrated a negative correlation with monocytes in PCOS patients. CONCLUSION: ACSS2, LPIN1, and NR4A1 emerge as PCOS-related diagnostic biomarkers and potential intervention targets, opening new avenues for the diagnosis and management of PCOS.


Asunto(s)
Biomarcadores , Mitocondrias , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares , Síndrome del Ovario Poliquístico , Humanos , Síndrome del Ovario Poliquístico/inmunología , Síndrome del Ovario Poliquístico/metabolismo , Femenino , Biomarcadores/metabolismo , Mitocondrias/metabolismo , Aprendizaje Automático , Adulto , Mastocitos/inmunología , Mastocitos/metabolismo
3.
J Proteomics ; 298: 105153, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38438079

RESUMEN

Sperm cryopreservation decreases motility, probably due to changes in protein phosphorylation. Our objective was to use quantitative phosphoproteomics for systematic comparative analyses of fresh versus frozen-thawed sperm to identify factors causing cryo-injury. Ejaculates were collected (artificial vagina) from six Dorper rams, pooled, extended, and frozen over liquid nitrogen. Overall, 915, 3382, and 6875 phosphorylated proteins, phosphorylated peptides, and phosphorylation sites, respectively, were identified. At least two modified sites were present in 57.94% of the 6875 phosphosites identified, of which AKAP4 protein contained up to 331 modified sites. There were 732 phosphorylated peptides significantly up-regulated and 909 significantly down-regulated in frozen-thawed versus fresh sperm. Moreover, the conserved motif [RxxS] was significantly down-regulated in frozen-thawed sperm. Phosphorylation of sperm-specific proteins, e.g., AKAP3/4, CABYR, FSIP2, GSK3A/B, GPI, and ODF1/2 make them potential biomarkers to assess the quality of frozen-thawed ram sperm. Furthermore, these differentially phosphorylated proteins and modification sites were implicated in cryopreservation-induced changes in sperm energy production, fiber sheath composition, and various biological processes. We concluded that abnormal protein phosphorylation modifications are key regulators of reduced sperm motility. These novel findings implicated specific protein phosphorylation modifications in sperm cryo-injury. SIGNIFICANCE: This study used phosphorylated TMT quantitative proteomics to explore regulation of epigenetic modifications in frozen-thawed ram sperm. This experiment demonstrated that ram sperm freezing affects phosphorylation site modifications of proteins, especially those related to functions such as sperm motility and energy production. Furthermore, it is important to link functions of phosphorylated proteins with changes in sperm quality after freezing and thawing, and to clarify intrinsic reasons for sperm quality changes, which is of great importance for elucidating mechanisms of sperm freezing damage. Based on these protein markers and combined with cryoprotectant design theory, it provides a theoretical basis and data reference to study sperm cryoprotectants.


Asunto(s)
Preservación de Semen , Motilidad Espermática , Femenino , Masculino , Ovinos , Animales , Semen , Criopreservación , Espermatozoides , Oveja Doméstica , Péptidos
4.
Circulation ; 149(21): 1670-1688, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38314577

RESUMEN

BACKGROUND: Preeclampsia is a serious disease of pregnancy that lacks early diagnosis methods or effective treatment, except delivery. Dysregulated uterine immune cells and spiral arteries are implicated in preeclampsia, but the mechanistic link remains unclear. METHODS: Single-cell RNA sequencing and spatial transcriptomics were used to identify immune cell subsets associated with preeclampsia. Cell-based studies and animal models including conditional knockout mice and a new preeclampsia mouse model induced by recombinant mouse galectin-9 were applied to validate the pathogenic role of a CD11chigh subpopulation of decidual macrophages (dMφ) and to determine its underlying regulatory mechanisms in preeclampsia. A retrospective preeclampsia cohort study was performed to determine the value of circulating galectin-9 in predicting preeclampsia. RESULTS: We discovered a distinct CD11chigh dMφ subset that inhibits spiral artery remodeling in preeclampsia. The proinflammatory CD11chigh dMφ exhibits perivascular enrichment in the decidua from patients with preeclampsia. We also showed that trophoblast-derived galectin-9 activates CD11chigh dMφ by means of CD44 binding to suppress spiral artery remodeling. In 3 independent preeclampsia mouse models, placental and plasma galectin-9 levels were elevated. Galectin-9 administration in mice induces preeclampsia-like phenotypes with increased CD11chigh dMφ and defective spiral arteries, whereas galectin-9 blockade or macrophage-specific CD44 deletion prevents such phenotypes. In pregnant women, increased circulating galectin-9 levels in the first trimester and at 16 to 20 gestational weeks can predict subsequent preeclampsia onset. CONCLUSIONS: These findings highlight a key role of a distinct perivascular inflammatory CD11chigh dMφ subpopulation in the pathogenesis of preeclampsia. CD11chigh dMφ activated by increased galectin-9 from trophoblasts suppresses uterine spiral artery remodeling, contributing to preeclampsia. Increased circulating galectin-9 may be a biomarker for preeclampsia prediction and intervention.


Asunto(s)
Decidua , Galectinas , Macrófagos , Preeclampsia , Remodelación Vascular , Preeclampsia/metabolismo , Preeclampsia/inmunología , Embarazo , Femenino , Animales , Galectinas/metabolismo , Macrófagos/metabolismo , Macrófagos/inmunología , Macrófagos/patología , Ratones , Humanos , Decidua/metabolismo , Decidua/patología , Ratones Noqueados , Útero/metabolismo , Útero/irrigación sanguínea , Modelos Animales de Enfermedad , Receptores de Hialuranos/metabolismo , Receptores de Hialuranos/genética , Estudios Retrospectivos , Ratones Endogámicos C57BL , Antígenos CD11
5.
Biomolecules ; 14(1)2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38254716

RESUMEN

BACKGROUND: While extensive research highlighted the involvement of metabolism and immune cells in female reproductive diseases, causality remains unestablished. METHODS: Instrumental variables for 486 circulating metabolites (N = 7824) and 731 immunophenotypes (N = 3757) were derived from a genome-wide association study (GWAS) meta-analysis. FinnGen contributed data on 14 female reproductive disorders. A bidirectional two-sample Mendelian randomization study was performed to determine the relationships between exposures and outcomes. The robustness of results, potential heterogeneity, and horizontal pleiotropy were examined through sensitivity analysis. RESULTS: High levels of mannose were found to be causally associated with increased risks of gestational diabetes (GDM) (OR [95% CI], 6.02 [2.85-12.73], p = 2.55 × 10-6). A genetically predicted elevation in the relative count of circulating CD28-CD25++CD8+ T cells was causally related to increased female infertility risk (OR [95% CI], 1.26 [1.14-1.40], p = 1.07 × 10-5), whereas a high absolute count of NKT cells reduced the risk of ectopic pregnancy (OR [95% CI], 0.87 [0.82-0.93], p = 5.94 × 10-6). These results remained consistent in sensitivity analyses. CONCLUSIONS: Our study supports mannose as a promising GDM biomarker and intervention target by integrating metabolomics and genomics.


Asunto(s)
Linfocitos T CD8-positivos , Diabetes Gestacional , Embarazo , Humanos , Femenino , Estudio de Asociación del Genoma Completo , Manosa , Análisis de la Aleatorización Mendeliana , Antígenos CD28
6.
Clin Nutr ESPEN ; 59: 1-8, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38220361

RESUMEN

BACKGROUND & AIM: Sleep disorder is a growing concern, and calcium supplementation is often recommended as a potential intervention for sleep disorders. However, the causal relationship between calcium levels and the incidence of sleep disorders remains unclear. Mendelian randomization techniques utilizing genetic variants that affect calcium levels, can provide valuable insights into causality. This study aims to examine the association between calcium levels and sleep disorders in a diverse population that includes both adolescents and adults, and investigate the effects of calcium levels on sleep disorders. METHODS: Mendelian randomization analysis was conducted using data from UK Biobank and FinnGen datasets. The inverse-variance weighting (IVW) was selected as the primary method. In addition, traditional mediation analysis was performed on a subset of the NHANES data spanning from 2007 to 2018. RESULTS: Our findings provide evidence supporting a causal relationship between calcium intake and reduced risk of sleep disorders (beta = -0.079, SE = 0.0395, P = 0.0457). While not reaching statistical significance, other MR methods such as weighted median and Mr-Egger exhibited similar directional trends. Analysis of the NHANES cohort revealed a negative association between calcium levels and the prevalence of sleep disorders in male, black, and physically active populations. However, this association was not observed in other demographic groups. CONCLUSION: Our results suggested that there is no significant correlation between calcium levels and sleep disorder in non-exercise populations. This raises concerns about the long-term high-dose calcium supplementation in clinical practice, which requires further investigation.


Asunto(s)
Calcio , Trastornos del Sueño-Vigilia , Adolescente , Adulto , Humanos , Masculino , Suplementos Dietéticos , Análisis de la Aleatorización Mendeliana , Encuestas Nutricionales , Trastornos del Sueño-Vigilia/genética , Femenino
8.
Lab Invest ; 104(3): 100303, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38103870

RESUMEN

Triple-negative breast cancer (TNBC) has a poor prognosis with limited therapeutic options available for affected patients. Efforts are ongoing to identify surrogate markers for tumor-specific CD8+ T cells that can predict the response to immune checkpoint inhibitor (ICI) therapies, such as programmed cell death protein 1 or programmed cell death ligand-1 blockade. We have previously identified tumor-specific CD39+CD8+ T cells in non-small cell lung cancer that might help predict patient responses to programmed cell death protein 1 or programmed cell death ligand-1 blockade. Based on this finding, we conducted a comparative interrogation of TNBC in an Asian cohort to evaluate the potential of CD39 as a surrogate marker of tumor-specific CD8+ T cells. Using ICI-treated TNBC mouse models (n = 24), flow cytometric analyses of peripheral blood mononuclear cells and tumor-infiltrating lymphocytes revealed that >99% of tumor-specific CD8+ T cells also expressed CD39. To investigate the relationship between CD39+CD8+ T-cell density and CD39 expression with disease prognosis, we performed multiplex immunohistochemistry staining on treatment-naive human TNBC tissues (n = 315). We saw that the proportion of CD39+CD8+ T cells in human TNBC tumors correlated with improved overall survival, as did the densities of other CD39+ immune cell infiltrates, such as CD39+CD68+ macrophages. Finally, increased CD39 expression on CD8+ T cells was also found to predict the response to ICI therapy (pembrolizumab) in a separate cohort of 11 TNBC patients. These findings support the potential of CD39+CD8+ T-cell density as a prognostic factor in Asian TNBC patients.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Linfocitos T CD8-positivos , Pronóstico , Neoplasias de la Mama Triple Negativas/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Leucocitos Mononucleares/metabolismo , Ligandos , Neoplasias Pulmonares/metabolismo , Biomarcadores/metabolismo , Linfocitos Infiltrantes de Tumor , Antígeno B7-H1/metabolismo
9.
Anesth Analg ; 137(5): 1047-1055, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37862597

RESUMEN

BACKGROUND: The use of labor neuraxial analgesia (NA) in China has increased significantly in the past decade, and the current rate of use is unknown. This study aimed to describe the epidemiology of NA based on a large multicenter cross-sectional survey, the China Labor and Delivery Survey (CLDS) (2015-2016), and to evaluate the association between NA and intrapartum caesarean delivery (CD) and maternal and neonatal outcomes. METHODS: The CLDS was a facility-based cross-sectional investigation with a cluster random sampling scheme conducted from 2015 to 2016. A specific weight was assigned to each individual based on the sampling frame. Logistic regression was adopted to analyze the factors associated with the use of NA. A propensity score matching scheme was used to analyze the associations between NA and intrapartum CD and perinatal outcomes. RESULTS: A total of 51,488 vaginal deliveries or intrapartum CD were included in our study, excluding prelabor CDs. The weighted NA rate was 17.3% (95% confidence interval [CI], 16.6-18.0) in this survey population. Nulliparous, previous CD, hypertensive disorders, and labor augmentation were associated with higher use of NA. In the propensity score-matched analysis, NA was associated with reduced risks of intrapartum CD, especially intrapartum CD by maternal request (adjusted odds ratio [aOR], 0.68; 95% CI, 0.60-0.78 and aOR, 0.48; 95% CI, 0.30-0.76, respectively), 3rd or 4th degree perineal laceration (aOR, 0.36; 95% CI, 0.15-0.89), and 5-minute Apgar score ≤3 (aOR, 0.15; 95% CI, 0.03-0.66). CONCLUSIONS: The use of NA may be associated with improved obstetric outcomes, including fewer intrapartum CD, less birth canal trauma, and better neonatal outcomes in China.


Asunto(s)
Analgesia Epidural , Trabajo de Parto , Embarazo , Femenino , Humanos , Puntaje de Propensión , Estudios Transversales , Parto , Parto Obstétrico , Analgesia Epidural/efectos adversos
10.
Biomed Pharmacother ; 166: 115340, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37625321

RESUMEN

Ginsenosides, agents extracted from an important herb (ginseng), are expected to provide new therapies for endometrium-related diseases. Based on the molecular types of ginsenosides, we reviewed the main pharmacological effects of ginsenosides against endometrium-related diseases (e.g., endometrial cancers, endometriosis, and endometritis). The mechanism of action of ginsenosides involves inducing apoptosis of endometrium-related cells, promoting autophagy of endometrium-related cells, regulating epithelial-mesenchymal transition (EMT) in endometrium-related cells, and activating the immune system to kill cells associated with endometrial diseases. We hope to provide a theoretical foundation for the treatment of endometrium-related diseases by ginsenosides.


Asunto(s)
Neoplasias Endometriales , Endometriosis , Ginsenósidos , Enfermedades Uterinas , Femenino , Humanos , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Endometrio , Neoplasias Endometriales/tratamiento farmacológico , Endometriosis/tratamiento farmacológico
11.
J Immunother Cancer ; 11(8)2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37586766

RESUMEN

BACKGROUND: Combination therapy with radioembolization (yttrium-90)-resin microspheres) followed by nivolumab has shown a promising response rate of 30.6% in a Phase II trial (CA209-678) for advanced hepatocellular carcinoma (HCC); however, the response mechanisms and relevant biomarkers remain unknown. METHODS: By collecting both pretreatment and on-treatment samples, we performed multimodal profiling of tissue and blood samples and investigated molecular changes associated with favorable responses in 33 patients from the trial. RESULTS: We found that higher tumor mutation burden, NCOR1 mutations and higher expression of interferon gamma pathways occurred more frequently in responders. Meanwhile, non-responders tended to be enriched for a novel Asian-specific transcriptomic subtype (Kaya_P2) with a high frequency of chromosome 16 deletions and upregulated cell cycle pathways. Strikingly, unlike other cancer types, we did not observe any association between T-cell populations and treatment response, but tumors from responders had a higher proportion of CXCL9+/CXCR3+ macrophages. Moreover, biomarkers discovered in previous immunotherapy trials were not predictive in the current cohort, suggesting a distinctive molecular landscape associated with differential responses to the combination therapy. CONCLUSIONS: This study unraveled extensive molecular changes underlying distinctive responses to the novel treatment and pinpointed new directions for harnessing combination therapy in patients with advanced HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Microesferas , Nivolumab/farmacología , Nivolumab/uso terapéutico , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Deleción Cromosómica
14.
Theriogenology ; 208: 132-141, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37327742

RESUMEN

Previous studies have demonstrated that melatonin could ameliorate oxidative stress during the cryopreservation of mouse MII oocytes and their in vitro culture after parthenogenetic activation. However, the underlying molecular mechanism remained poorly understood. This study was conducted to investigate whether melatonin could modulate the oxidative stress in the parthenogenetic 2-cell embryos derived from vitrified-warmed oocytes through SIRT1. The results showed that the reactive oxygen species levels increased, the glutathione levels and SIRT1 expression decreased significantly in parthenogenetic 2-cell embryos derived from cryopreserved oocyte, and the parthenogenetic blastocyst formation rates significantly decreased when compared to those derived from control oocytes. These unfavorable phenomena were prevented by the addition of either 10-9 mol/L melatonin or 10-6 mol/L SRT-1720 (SIRT1 agonist), and it was restored by the supplementation of 10-9 mol/L melatonin in combination with 2 × 10-5 mol/L EX527 (SIRT1 inhibitor). Therefore, the findings from the present study concluded that melatonin may reduce oxidative stress via regulating SIRT1, and potentially promote the parthenogenetic development of vitrified-warmed mouse MII oocytes.


Asunto(s)
Melatonina , Animales , Ratones , Melatonina/farmacología , Sirtuina 1 , Oocitos , Partenogénesis , Estrés Oxidativo
15.
Int J Mol Sci ; 24(9)2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37176056

RESUMEN

Muscle growth and injury-induced regeneration are controlled by skeletal muscle satellite cells (MuSCs) through myogenesis in postnatal animals. Meanwhile, myogenesis is accompanied by mitochondrial function and enzyme activity. Nevertheless, the underlying molecular mechanisms involving non-coding RNAs including circular RNAs (circRNAs) and microRNAs (miRNAs) remain largely unsolved. Here, we explored the myogenic roles of miR-145-3p and MYBL1 on muscle development and mitochondrial mass. We noticed that overexpression of miR-145-3p inhibited MuSCs proliferation and reduced the number of viable cells. Meanwhile, deficiency of miR-145-3p caused by LNAantimiR-145-3p or an inhibitor retarded the differentiation of MuSCs. miR-145-3p altered the mitochondrial mass in MuSCs. Moreover, miR-145-3p targeted and negatively regulated the expression of CDR1as and MYBL1. The knockdown of the MYBL1 using ASO-2'MOE modification simulated the inhibitory function of miR-145-3p on cell proliferation. Additionally, MYBL1 mediated the regulation of miR-145-3p on Vexin, VCPIP1, COX1, COX2, and Pax7. These imply that CDR1as/miR-145-3p/MYBL1/COX1, COX2, VCPIP1/Vexin expression at least partly results in a reduction in mitochondrial mass and MuSCs proliferation. These novel findings confirm the importance of mitochondrial mass during myogenesis and the boosting of muscle/meat development in mammals.


Asunto(s)
Cabras , MicroARNs , Animales , Cabras/genética , Cabras/metabolismo , Ciclooxigenasa 2 , MicroARNs/genética , MicroARNs/metabolismo , Diferenciación Celular/fisiología , Proliferación Celular/genética
16.
Theriogenology ; 204: 8-17, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37030173

RESUMEN

In ram sperm, metabolites are important components of the plasma membrane, energy metabolism cycle, and precursors for other membrane lipids, and they may have important roles in maintaining plasma membrane integrity, energy metabolism, and regulation of cryotolerance. In this study, the ejaculates from 6 Dorper rams were pooled and sperm were systematically investigated by metabolomics at various steps of cryopreservation (37 °C, fresh [F]; from 37 to 4 °C, cooling [C]; and from 4 to -196 to 37 °C, frozen-thawed [FT]) to identify differential metabolites (DM). There were 310 metabolites identified, of which 86 were considered DMs. Regarding the DMs, there were 23 (0 up and 23 down), 25 (12 up and 13 down), and 38 (7 up and 31 down) identified during cooling (C vs F), freezing (FT vs C), and cryopreservation (FT vs F), respectively. Furthermore, some key polyunsaturated fatty acids (FAs), particularly, linoleic acid (LA), docosahexaenoic acid (DHA), and arachidonic acid (AA) were down-regulated during cooling and cryopreservation. Significant DMs were enriched in several metabolic pathways including biosynthesis of unsaturated FAs, LA metabolism, mammalian target of rapamycin (mTOR), forkhead box transcription factors (FoxO), adenosine monophosphate-activated protein kinase (AMPK), phosphatidylinositol 3-kinase/protein kinase B (PI3K-Akt) signaling pathways, regulation of lipolysis in adipocytes, and FA biosynthesis. This was apparently the first report to compare metabolomics profiles of ram sperm during cryopreservation and provided new knowledge to improve this process.


Asunto(s)
Preservación de Semen , Semen , Masculino , Animales , Semen/fisiología , Fosfatidilinositol 3-Quinasas , Criopreservación/veterinaria , Espermatozoides/fisiología , Ácidos Grasos Insaturados , Preservación de Semen/veterinaria , Motilidad Espermática/fisiología , Mamíferos
17.
Mod Pathol ; 36(4): 100056, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36788078

RESUMEN

Mutations in the PI3K pathway, particularly PIK3CA, were reported to be intimately associated with triple-negative breast cancer (TNBC) progression and the development of treatment resistance. We profiled PIK3CA and other genes on 166 early-stage TNBC tumors from Singapore for comparison to publicly available TNBC cohorts. These tumors were profiled transcriptionally using a NanoString panel of immune genes and multiplex immunohistochemistry, then manually scored for PD-L1-positivity using 2 clinically relevant clones, SP142 and 22C3. We discovered a higher rate of PIK3CA mutations in our TNBC cohort than in non-Asian cohorts, along with TP53, BRCA1, PTPN11, and MAP3K1 alterations. PIK3CA mutations did not affect overall or recurrence-free survival, and when compared with PIK3CAWT tumors, there were no differences in immune infiltration. Using 2 clinically approved antibodies, PIK3CAmut tumors were associated with PD-L1 negativity. Analysis of comutation frequencies further revealed that PIK3CA mutations tended to be accompanied by MAP kinase pathway mutation. The mechanism and impact of PIK3CA alterations on the TNBC tumor immune microenvironment and PD-L1 positivity warrant further study.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/patología , Antígeno B7-H1/genética , Singapur , Fosfatidilinositol 3-Quinasas/genética , Mutación , Fosfatidilinositol 3-Quinasa Clase I/genética , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/análisis , Microambiente Tumoral
18.
J Reprod Immunol ; 155: 103788, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36580846

RESUMEN

Acute lung injury (ALI) is a common acute respiratory disease with high morbidity and mortality rate in pregnant women. Receptor activator of NF-κB ligand (TNFSF11, also known as RANKL) exerts either pro-inflammatory or anti-inflammatory effects on the immune response. LPS administration reduced the survival time (n = 10, p < 0.01), increased wet/dry ratio (n = 10, p < 0.001) and lung injury score (n = 10, p < 0.001), the elevated proportions of plasmacytoid dendritic cells (pDCs) (n = 10, p < 0.0001), tissue-resident DCs (resDCs) (n = 10, p < 0.0001), macrophages (n = 10, p < 0.0001), and neutrophils (n = 10, p < 0.0001), and the expressions of costimulatory molecules and inflammation cytokines (n = 10, p < 0.05) in lungs of pregnant mice, compared with non-pregnant mice. In vitro, progesterone up-regulated the expression of RANKL (n > 6, p < 0.05) on pulmonary fibroblasts. The results of cytokine arrays showed that the cytokines associated with inflammatory response and leukocyte differentiation were decreased in pulmonary fibroblasts after treatment with anti-RANKL neutralizing antibody, compared with control pulmonary fibroblasts. More notably, we found that Tnfsf11-/- pregnant mice had longer survival durations (n = 10, p < 0.01), lower lung injury scores (n = 10, p < 0.05), and lower immune cell infiltration (n = 10, p < 0.05). These data imply that the RANKL/RANK axis plays an essential role in LPS-induced ALI during pregnancy possibly through a variety of pathways.


Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Femenino , Humanos , Ratones , Embarazo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Citocinas/metabolismo , Pulmón , FN-kappa B/metabolismo , Progesterona/metabolismo
19.
BMC Biol ; 20(1): 276, 2022 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-36482461

RESUMEN

BACKGROUND: Decidualization refers to the process of transformation of endometrial stromal fibroblast cells into specialized decidual stromal cells that provide a nutritive and immunoprivileged matrix essential for blastocyst implantation and placental development. Deficiencies in decidualization are associated with a variety of pregnancy disorders, including female infertility, recurrent implantation failure (RIF), and miscarriages. Despite the increasing number of genes reportedly associated with endometrial receptivity and decidualization, the cellular and molecular mechanisms triggering and underlying decidualization remain largely unknown. Here, we analyze single-cell transcriptional profiles of endometrial cells during the window of implantation and decidual cells of early pregnancy, to gains insights on the process of decidualization. RESULTS: We observed a unique IGF1+ stromal cell that may initiate decidualization by single-cell RNA sequencing. We found the IL1B+ stromal cells promote gland degeneration and decidua hemostasis. We defined a subset of NK cells for accelerating decidualization and extravillous trophoblast (EVT) invasion by AREG-IGF1 and AREG-CSF1 regulatory axe. Further analysis indicates that EVT promote decidualization possibly by multiply pathways. Additionally, a systematic repository of cell-cell communication for decidualization was developed. An aberrant ratio conversion of IGF1+ stromal cells to IGF1R+ stromal cells is observed in unexplained RIF patients. CONCLUSIONS: Overall, a unique subpopulation of IGF1+ stromal cell is involved in initiating decidualization. Our observations provide deeper insights into the molecular and cellular characterizations of decidualization, and a platform for further development of evaluation of decidualization degree and treatment for decidualization disorder-related diseases.


Asunto(s)
Placenta , Células del Estroma , Embarazo , Humanos , Femenino , Factor I del Crecimiento Similar a la Insulina/genética
20.
Cells ; 11(22)2022 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-36429002

RESUMEN

Oocyte cryopreservation is widely used in assisted-reproductive technology and animal production. However, cryopreservation not only induces a massive accumulation of reactive oxygen species (ROS) in oocytes, but also leads to oxidative-stress-inflicted damage to mitochondria and the endoplasmic reticulum. These stresses lead to damage to the spindle, DNA, proteins, and lipids, ultimately reducing the developmental potential of oocytes both in vitro and in vivo. Although oocytes can mitigate oxidative stress via intrinsic antioxidant systems, the formation of ribonucleoprotein granules, mitophagy, and the cryopreservation-inflicted oxidative damage cannot be completely eliminated. Therefore, exogenous antioxidants such as melatonin and resveratrol are widely used in oocyte cryopreservation to reduce oxidative damage through direct or indirect scavenging of ROS. In this review, we discuss analysis of various oxidative stresses induced by oocyte cryopreservation, the impact of antioxidants against oxidative damage, and their underlying mechanisms. We hope that this literature review can provide a reference for improving the efficiency of oocyte cryopreservation.


Asunto(s)
Antioxidantes , Estrés Oxidativo , Animales , Antioxidantes/farmacología , Especies Reactivas de Oxígeno , Oocitos , Criopreservación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA