Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Langmuir ; 40(17): 9020-9027, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38632903

RESUMEN

We prepared BiOCl, BiO(ClBr), BiO(ClBrI), and BiO[ClBrI(CO3)0.5] materials using a simple coprecipitation method. It was found that adjusting the number of anions in the anion layer was conducive to adjusting the band structure of BiOX and could effectively promote the migration and separation of photogenerated carriers, thus improving the photocatalytic activity. We first selected methyl orange (MO) as the study pollutant and compared it with BiOCl, BiO(ClBr), and BiO(ClBrI). The first-order kinetic constants of MO degradation by BiO[ClBrI(CO3)0.5] increased by 90.3, 33.9, and 3.1 times, respectively. The photocatalytic degradation rate of methylene blue by BiO[ClBrI(CO3)0.5] was 89.5%, indicating the excellent photocatalytic performance of BiO[ClBrI(CO3)0.5]. The stability of BiO[ClBrI(CO3)0.5] was demonstrated through cyclic experiments and XRD analysis before and after the reaction. The photocatalytic degradation of MO by BiO[ClBrI(CO3)0.5] showed that h+ and 1O2 were the main active oxidizing species and •O2- was the secondary active substance. Overall, our work provides new ideas for the synthesis and degradation of organic pollutants by using two-dimensional anionic high-entropy materials.

2.
Angew Chem Int Ed Engl ; 63(21): e202315802, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38453646

RESUMEN

The development of nonpyrolytic catalysts featuring precisely defined active sites represents an effective strategy for investigating the fundamental relationship between the catalytic activity of oxygen reduction reaction (ORR) catalysts and their local coordination environments. In this study, we have synthesized a series of model electrocatalysts with well-defined CoN4 centers and nonplanar symmetric coordination structures. These catalysts were prepared by a sequential process involving the chelation of cobalt salts and 1,10-phenanthroline-based ligands with various substituent groups (phen(X), where X=OH, CH3, H, Br, Cl) onto covalent triazine frameworks (CTFs). By modulating the electron-donating or electron-withdrawing properties of the substituent groups on the phen-based ligands, the electron density surrounding the CoN4 centers was effectively controlled. Our results demonstrated a direct correlation between the catalytic activity of the CoN4 centers and the electron-donating ability of the substituent group on the phenanthroline ligands. Notably, the catalyst denoted as BCTF-Co-phen(OH), featuring the electron-donating OH group, exhibited the highest ORR catalytic activity. This custom-crafted catalyst achieved a remarkable half-wave potential of up to 0.80 V vs. RHE and an impressive turnover frequency (TOF) value of 47.4×10-3 Hz at 0.80 V vs. RHE in an alkaline environment.

3.
Angew Chem Int Ed Engl ; 63(14): e202319216, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38337143

RESUMEN

The synthesis of hydrogen peroxide through artificial photosynthesis is a green and promising technology with advantages in sustainability, economy and safety. However, superoxide radical (⋅O2 -), an important intermediate in photocatalytic oxygen reduction to H2O2 production, has strong oxidizing properties that potentially destabilize the catalyst. Therefore, avoiding the accumulation of ⋅O2 - for its rapid conversion to H2O2 is of paramount significance in improving catalyst stability and H2O2 yield. In this work, a strategy was developed to utilize protonated groups for the rapid depletion of converted ⋅O2 -, thereby the efficiency of photocatalytic synthesis of H2O2 from CN was successfully enhanced by 47-fold. The experimental findings demonstrated that polydopamine not only improved carrier separation efficiency, and more importantly, provided the adsorption reduction active site for ⋅O2 - for efficient H2O2 production. This work offers a versatile approach for synthesizing efficient and stable photocatalysts.

4.
ACS Nano ; 18(8): 6579-6590, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38353995

RESUMEN

Excitonic effects significantly influence the selective generation of reactive oxygen species and photothermal conversion efficiency in photocatalytic reactions; however, the intrinsic factors governing excitonic effects remain elusive. Herein, a series of single-atom catalysts with well-defined M1-N3C1 (M = Mn, Fe, Co, and Ni) active sites are designed and synthesized to investigate the structure-activity relationship between photocatalytic materials and excitonic effects. Comprehensive characterization and theoretical calculations unveil that excitonic effects are positively correlated with the number of valence electrons in single metal atoms. The single Mn atom with 5.93 valence electrons exhibits the weakest excitonic effects, which dominate superoxide radical (O2•-) generation through charge transfer and enhance photothermal conversion efficiency. Conversely, the single Ni atom with 9.27 valence electrons exhibits the strongest excitonic effects, dominating singlet oxygen (1O2) generation via energy transfer while suppressing photothermal conversion efficiency. Based on the valence electron number dependent excitonic effects, a reaction environment with hyperthermia and abundant cytotoxic O2•- is designed, achieving efficient and stable water disinfection. This work reveals single metal atom dependent excitonic effects and presents an atomic-level methodology for catalytic application targeted reaction environment tailoring.

5.
Adv Mater ; 36(18): e2312868, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38241728

RESUMEN

The intelligent construction of non-noble metal materials that exhibit reversible oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) with bifunctional electrocatalytic performance is greatly coveted in the realm of zinc-air batteries (ZABs). Herein, a crafted structure-amorphous MnO2 lamellae encapsulated covalent triazine polymer-derived N, S, P co-doped carbon sphere (A-MnO2/NSPC) is designed using a self-doped pyrolysis coupled with an in situ encapsulation strategy. The customized A-MnO2/NSPC-2 demonstrates a superior bifunctional electrocatalytic performance, confirmed by a small ΔE index of 0.64 V for ORR/OER. Experimental investigations, along with density functional theory calculations validate that predesigned amorphous MnO2 surface defects and abundant heteroatom catalytic active sites collectively enhance the oxygen electrocatalytic performance. Impressively, the A-MnO2/NSPC-based rechargeable liquid ZABs show a large open-circuit potential of 1.54 V, an ultrahigh peak power density of 181 mW cm-2, an enormous capacity of 816 mAh g-1, and a remarkable stability for more than 1720 discharging/charging cycles. Additionally, the assembled flexible all-solid-state ZABs also demonstrate outstanding cycle stability, surpassing 140 discharging/charging cycles. Therefore, this highly operable synthetic strategy offers substantial understanding in the development of magnificent bifunctional electrocatalysts for various sustainable energy conversions and beyond.

6.
Langmuir ; 40(3): 1848-1857, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38183664

RESUMEN

Elaborating the specific reactive oxygen species (ROS) involved in the photocatalytic degradation of atrazine (ATZ) is of great significance for elucidating the underlying mechanism. This study provided conclusive evidence that hydroxyl radicals (·OH) were the primary ROS responsible for the efficient photocatalytic degradation of ATZ, thereby questioning the reliability of widely adopted radical quenching techniques in discerning authentic ROS species. As an illustration, oxygen-modified g-C3N4 (OCN) was prepared to counteract the limitations of pristine g-C3N4 (CN). Comparative assessments between CN and OCN revealed a remarkable 10.44-fold improvement in the photocatalytic degradation of ATZ by OCN. This enhancement was ascribed to the increased content of C-O functional groups on the surface of the OCN, which facilitated the conversion of superoxide radicals (·O2-) into hydrogen peroxide (H2O2), subsequently leading to the generation of ·OH. The increased production of ·OH contributed to the efficient dealkylation, dechlorination, and hydroxylation of ATZ. Furthermore, toxicity assessments revealed a significant reduction in ATZ toxicity following its photocatalytic degradation by OCN. This study sheds light on the intricate interconversion of ROS and offers valuable mechanistic insights into the photocatalytic degradation of ATZ.

7.
ACS Appl Mater Interfaces ; 16(1): 633-642, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150331

RESUMEN

It is highly desirable to fabricate transition bimetallic alloy-embedded porous nanocarbons with a unique nanoarchitecture for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) in rechargeable zinc-air batteries. In this work, we introduce a template-assisted in situ alloying synthesis of FeNi alloy nanoparticle-decorated coral-like nanocarbons (FeNi-CNCs) as efficient OER/ORR dual-functional electrocatalysts. The present materials are produced through polycondensation of a covalent triazine framework (CTF), the coordination of Ni and Fe ions, and sequential pyrolytic treatment. Through the pyrolysis process, the nanolamellar FeNi-CTF precursors can be facilely converted into FeNi alloy nanoparticle-decorated nanocarbons. These nanocarbons possess a distinctive three-dimensional (3D) coral-like nanostructure, which is favorable for the transport of oxygen and the diffusion of electrolyte. As a result, FeNi-CNC-800 with the highest efficiency exhibited remarkable electrocatalytic performance and great durability. Additionally, it also can be assembled into rechargeable zinc-air batteries that can be assembled in both liquid and solid forms, offering a superior peak power density, large specific capacity, and outstanding reusability during charging/discharging cycles (e.g., 5160 charging-and-discharging cycles at 10 mA cm-2 for the liquid forms). These traits make it a highly promising option in the burgeoning field of wearable energy conversion.

8.
Chem Commun (Camb) ; 59(90): 13478-13481, 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37880980

RESUMEN

A strategy involving organic photocatalytic conversion using hydrothermal synthesis of high-entropy oxide (HEO) (CoCuZnMnNa)Ox nanoparticles was developed. Under mild conditions, HEO nanoparticles were driven by visible light to achieve ideal yields and selectivity in sulfide oxidative coupling reactions and benzimidazole cyclization reactions, with a wide substrate range. This study is expected to contribute to the use of high-entropy oxides in organic photocatalysis.

9.
J Colloid Interface Sci ; 652(Pt B): 1545-1553, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37660611

RESUMEN

The development of bifunctional photocatalysts for enhancing hydrogen (H2) and hydrogen peroxide (H2O2) production from water is essential in addressing environmental and energy issues. However, the practical implementation of photocatalytic technology is still constrained by the inadequate separation of photo-generated charge carriers. Herein, potassium (K) atoms are introduced into the interlayers of graphitic carbon nitride (g-C3N4) with a hollow hexagonal structure (K-TCN) and are coordinated with N atoms in adjacent layers. The presence of K-N coordination serves as a layer bridge, facilitating the separation of charge carriers. The hollow hexagonal structure reduces the distance over which photogenerated electrons migrate to the surface, thereby enhancing the reaction kinetics. Consequently, the optimized K-TCN exhibits a dramatically improved photocatalytic H2 (941.6 µmol g-1h-1 with platinum (Pt) as the cocatalyst) and H2O2 (347.6 µmol g-1h-1) generation as compared to hollow g-C3N4 (TCN) and bulk g-C3N4 nanosheet (CN) without K-N bridge under visible light irradiation. The unique design holds promising potential for developing highly efficient bifunctional photocatalysts towards producing renewable fuels and value-added chemicals.

10.
Nanotechnology ; 34(40)2023 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-37406614

RESUMEN

Photocatalytic CO2reduction is considered to be an appealing way of alleviating environmental pollution and energy shortages simultaneously under mild condition. However, the activity is greatly limited by the poor separation of the photogenerated carriers. Ion doping is a feasible strategy to facilitate the charge transfer. In this work, Ni-doped Bi4O5I2photocatalyst is successfully fabricated using a one-pot hydrothermal method. A few doping levels appear in the energy band of Bi4O5I2after Ni doping, which are used as springboards for electrons transition, thus promoting photoexcited electrons and holes separation. As a consequence, a remarkably enhanced yield of CO and CH4(6.2 and 1.9µmol g-1h-1) is obtained over the optimized Bi4O5I2-Ni15, which is approximately 2.1 and 3.8 times superior to pure Bi4O5I2, respectively. This work may serve as a model for the subsequent research of Bi-based photocatalysts to implement high-performance CO2photoreduction.

11.
Chem Commun (Camb) ; 59(42): 6314-6334, 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37132271

RESUMEN

Recently, the increasing concerns regarding environmental and energy-related issues due to the use of fossil fuels have triggered extensive research on sustainable electrochemical energy storage and conversion (EESC). In this case, covalent triazine frameworks (CTFs) possess a large surface area, tailorable conjugated structures, electron donating-accepting/conducting moieties, and excellent chemical and thermal stabilities. These merits make them leading candidates for EESC. However, their poor electrical conductivity impedes electron and ion conduction, leading to unsatisfactory electrochemical performances, which limit their commercial applications. Thus, to overcome these challenges, CTF-based nanocomposites and their derivatives such as heteroatom-doped porous carbons, which inherit most of the merits of pristine CTFs, lead to excellent performances in the field of EESC. In this review, initially, we briefly highlight the existing strategies for the synthesis of CTFs with application-targeted properties. Next, we review the contemporary progress of CTFs and their derivatives related to electrochemical energy storage (supercapacitors, alkali-ion batteries, lithium-sulfur batteries, etc.) and conversion (oxygen reduction/evolution reaction, hydrogen evolution reaction, carbon dioxide reduction reaction, etc.). Finally, we discuss perspectives on current challenges and recommendations for the further development of CTF-based nanomaterials in burgeoning EESC research.

12.
J Am Chem Soc ; 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37022925

RESUMEN

Restrained by the uncontrollable cleavage process of chemical bonds in methane molecules and corresponding formed intermediates, the target product in the reaction of methane selective oxidation to methanol would suffer from an inevitable overoxidation process, which is considered to be one of the most challenging issues in the field of catalysis. Herein, we report a conceptually different method for modulating the conversion pathway of methane through the selective cleavage of chemical bonds in the key intermediates to suppress the generation of peroxidation products. Taking metal oxides, typical semiconductors in the field of methane oxidation as model catalysts, we confirm that the cleavage of different chemical bonds in CH3O* intermediates could greatly affect the conversion pathway of methane, which has a vital role in product selectivity. Specifically, it is revealed that the formation of peroxidation products could be significantly prevented by the selective cleavage of C-O bonds in CH3O* intermediates instead of metal-O bonds, which is proved by the combination of density functional theory calculations and in situ infrared spectroscopy based on isotope labeling. By manipulating the lattice oxygen mobility of metal oxides, the electrons transferring from the surface to the CH3O* intermediates could directionally inject into the antibonding orbitals of the C-O bond, resulting in its selective cleavage. As a result, the gallium oxide with low lattice oxygen mobility shows a 3.8% conversion rate for methane with a high methanol generation rate (∼325.4 µmol g-1 h-1) and selectivity (∼87.0%) under room temperature and atmospheric pressure in the absence of extra oxidants, which is superior among the reported studies (reaction pressure: <20 bar).

13.
ChemSusChem ; 16(12): e202300015, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-36905229

RESUMEN

With a view to using solar energy, the exploitation of near-infrared (NIR) light, which constitutes about 50 % of solar energy, in photocatalytic H2 O2 synthesis remains challenging. In this study, resorcinol-formaldehyde (RF), which has a relatively low bandgap and high conductivity, is introduced for photothermal catalytic generation of H2 O2 under ambient conditions. Owing to the promoted surface charge transfer rate under high temperature, the photosynthetic yield reaches roughly 2000 µm within 40 min under 400 mW cm-2 irradiation with a solar-to-chemical conversion (SCC) efficiency of up to 0.19 % at 338 K under ambient conditions, exceeding the rate of photocatalysis with a cooling system by a factor of about 2.5. Notably, the H2 O2 produced by RF during photothermal process was formed via a two-channel pathway, leading to the overall promotion of H2 O2 formation. The resultant H2 O2 can be applied in situ for pollutant removal. This work offers a sustainable and economical route for the efficient formation of H2 O2 .


Asunto(s)
Energía Solar , Fotosíntesis , Catálisis , Conductividad Eléctrica , Formaldehído , Polímeros
14.
ACS Omega ; 8(6): 6059-6066, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36816678

RESUMEN

Photocatalysis provides an exciting solution to the current growing energy challenge. However, the activity and stability of photocatalysts are two important issues in photocatalytic applications. In this work, we have successfully developed an efficient and stable photocatalyst by loading ReS2 nanoparticles onto a CdS/ZnS heterojunction. After loading ReS2, there is a strong interaction between the CdS/ZnS heterojunction and ReS2, which accelerates the photogenerated charge migration and effectively inhibits the recombination of photogenerated electrons and holes. Accordingly, CdS/ZnS-ReS2 displays excellent photocatalytic activity and stability with the highest hydrogen production rate of 10 722 µmol g-1 h-1, which is approximately 178 times higher than that of the pure CdS and 5 times better than that of CdS/ZnS. This work not only facilitates solar energy conversion to improve photocatalytic activity and stability but also broadens the application of ReS2 as a cocatalyst.

15.
Chem Asian J ; 18(2): e202201139, 2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36507569

RESUMEN

Pt is usually used as cocatalyst for g-C3 N4 to produce H2 by photocatalytic splitting of water. However, the photocatalytic performance is still limited by the fast recombination of photo-generated electrons and holes, as well as the poor absorption of visible light. In this work, MoO2 /g-C3 N4 composites were prepared, in which MoO2 synergetic with Pt photo-deposited during H2 evolution reaction worked as unilateral dual cocatalyst to improve the photocatalytic activity. Within 4 hours of irradiation, the hydrogen production rate of MoO2 -Pt dual cocatalyst modified g-C3 N4 reached 3804.89 µmol/g/h, which was 120.18 times of that of pure g-C3 N4 (GCN, 31.66 µmol/g/h), 10.98 times of that of MoO2 modified g-C3 N4 (346.39 µmol/g/h), and 9.18 times of that of Pt modified g-C3 N4 (413.64 µmol/g/h). Characterization results demonstrate that the deficient MoO2 not only promoted visible light absorption of g-C3 N4 , but also worked as a "electron pool" to capture and transfer electrons to Pt.


Asunto(s)
Electrones , Hidrógeno , Luz , Agua
16.
J Environ Sci (China) ; 127: 60-68, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36522089

RESUMEN

With increasing concerns on the environment and human health, the degradation of glyphosate through the formation of less toxic intermediates is of great importance. Among the developed methods for the degradation of glyphosate, photodegradation is a clean and efficient strategy. In this work, we report a new photocatalyst by doping F ion on BiVO4 that can efficiently degrade glyphosate and reduce the toxic emissions of aminomethylphosphonic acid (AMPA) through the selective (P)-C-N cleavage in comparison of BiVO4 catalyst. The results demonstrate that the best suppression of AMPA formation was achieved by the catalyst of 0.3F@BiVO4 at pH = 9 (AMPA formation below 10%). In situ attenuated total reflectance Fourier transforms infrared (ATR-FTIR) spectroscopy indicates that the adsorption sites of glyphosate on BiVO4 and 0.3F@BiVO4 are altered due to the difference in electrostatic interactions. Such an absorption alteration leads to the preferential cleavage of the C-N bond on the N-C-P skeleton, thereby inhibiting the formation of toxic AMPA. These results improve our understanding of the photodegradation process of glyphosate catalyzed by BiVO4-based catalysts and pave a safe way for abiotic degradation of glyphosate.


Asunto(s)
Flúor , Glicina , Humanos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Fotólisis , Glifosato
17.
J Affect Disord ; 324: 521-528, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36586615

RESUMEN

OBJECTIVE: Influence of migration on mental impairments among adolescents has been well assessed. However, there lack empirical data on multiple mental health problems and comparisons of children who suffer from different parental migration. This study aims to compare the mental health status among left-behind adolescents (LBA), migrant adolescents (MA), and local adolescents (LA). METHODS: A total of 67,532 adolescents were investigated on depression, anxiety, sleep disturbance, and psychotic-like experiences (PLEs). The LBA were registered in Shenzhen's hukou (household register system) and are living in Shenzhen while their parent(s) has/have migrated to work elsewhere for over 6 months. MA, defined as adolescents who immigrated with parents from other places, are living but not registered in Shenzhen hukou. LA referred to adolescents who were registered in Shenzhen hukou and are living with their parents. Social-demographics, family function, and school climate were also evaluated as influential factors. RESULTS: The prevalence of overall mental health problems was 37.4 % for LBA, which was higher than that of MA (27.9 %) and LA (27.1 %). Females, adolescents with chronic physical illness, and with family history of mental disorders are all contributed to the increased occurrence of mental health issues. Poorer family function and school climate were also negatively associated with mental health among the three types of adolescents. CONCLUSION: LBA is at a higher risk for poor mental health than other adolescents. Interventions that promoting family function and improving school climate may be helpful, especially for girls with chronic physical illness, or with family history of mental disorders.


Asunto(s)
Migrantes , Niño , Femenino , Humanos , Adolescente , Encuestas y Cuestionarios , Salud Mental , Estado de Salud , China/epidemiología
18.
J Environ Manage ; 321: 115982, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36104886

RESUMEN

Hydrodynamic cavitation has been a promising method and technology in wastewater treatment, while the principles based on the design of cavitational reactors to optimize cavitation yield and performance remains lacking. Computational fluid dynamics (CFD), a supplementation of experimental optimization, has become an essential tool for this issue, owing to the merits of low investment and operating costs. Nevertheless, researchers with a non-engineering background or few CFD fundamentals used straightforward numerical strategies to treat cavitating flows, and this might result in many misinterpretations and consequently poor computations. This review paper presents the rationale behind hydrodynamic cavitation and application of cavitation modeling specific to the reactors in wastewater treatment. In particular, the mathematical models of multiphase flow simulation, including turbulence closures and cavitation models, are comprehensively described, whilst the advantages and shortcomings of each model are also identified and discussed. Examples and methods of the coupling of CFD technology, with experimental observations to investigate into the hydrodynamic behavior of cavitating devices that feature linear and swirling flows, are also critically summarized. Modeling issues, which remain unaddressed, i.e., the implementation strategies of numerical models, and the definition of cavitation numbers are identified and discussed. Finally, the advantages of CFD modeling are discussed and the future of CFD applications in this research area is also outlined. It is expected that the present paper would provide decision-making support for CFD beginners to efficiently perform CFD modeling and promote the advancement of cavitation simulation of reactors in the field of wastewater treatment.


Asunto(s)
Hidrodinámica , Purificación del Agua , Simulación por Computador , Modelos Teóricos , Tecnología
19.
ChemSusChem ; 15(23): e202201514, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36177848

RESUMEN

Hydrogen peroxide (H2 O2 ) is an important green oxidizing agent for environmental protection and chemical production. In comparison to the traditional anthraquinone method, photosynthesis is a green and energy-saving process for H2 O2 production. To improve the stability and practical application value of the H2 O2 synthesized by photocatalysis, the H2 O2 photosynthesis should be conducted in pure water without involving any sacrificial reagents. In this regard, organic semiconducting catalysts pose as a suitable candidate for photocatalytic H2 O2 synthesis owing to their metal-free nature to prevent H2 O2 decomposition by the metal ions. In this Perspective, the H2 O2 photosynthesis history is firstly introduced, followed by a review of the organic semiconductor photocatalysts reported to date. Finally, the main problems to thwart the advances of current pure H2 O-to-H2 O2 photosynthesis are discussed, followed by proposed solutions to address these issues in order to pave new ways for the development of highly efficient metal-free organic photocatalysts for sustainable pure H2 O-to-H2 O2 conversion.


Asunto(s)
Peróxido de Hidrógeno
20.
Int J Clin Exp Pathol ; 15(7): 258-271, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35949807

RESUMEN

TMEM204 (Transmembrane Protein 204) is a member of the TMEM family that regulates cell function and angiogenesis. Previous studies showed that TMEM204 is related to pancreatic cancer, but its roles in other cancers remain unknown. To reveal this relationship, we conducted a pan-cancer analysis by several online databases. The expression of TMEM204 was analyzed by Oncomine and Tumor Immune Estimation Resource2.0 (TIMER2.0). The prognostic potential of TMEM204 was evaluated by the GEPIA2, UALCAN, and Oncolnc. The methylation level of gene expression was analyzed by UALCAN, and the relationship between cancer and immune invasion was displayed by TIMER2.0. The Protein-Protein Interactions Network and functional analysis of TMEM204 and its related genes were conducted by STRING and Webgestalt. We found that TMEM204 expression was up-regulated and correlated with prognosis in multiple cancers. In liver hepatocellular carcinoma (LIHC), high TMEM204 expression was associated with a good prognosis, and with high infiltrating levels of CD8+ T and CD4+ T cells, macrophages, neutrophils, and myeloid dendritic cells. In addition, the methylation level in LIHC was higher than in normal tissues. p53 signaling pathway and Fanconi anemia pathway were implicated by KEGG pathway analysis. These results indicate that TMEM204 is associated with the prognosis, methylation, and immune invasion of cancers, especially LIHC. TMEM204 may act as a prognostic marker of LIHC and its role in other cancers should be studied.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA