Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 20(6): e1011326, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38857279

RESUMEN

The development of ectodermal organs begins with the formation of a stratified epithelial placode that progressively invaginates into the underlying mesenchyme as the organ takes its shape. Signaling by secreted molecules is critical for epithelial morphogenesis, but how that information leads to cell rearrangement and tissue shape changes remains an open question. Using the mouse dentition as a model, we first establish that non-muscle myosin II is essential for dental epithelial invagination and show that it functions by promoting cell-cell adhesion and persistent convergent cell movements in the suprabasal layer. Shh signaling controls these processes by inducing myosin II activation via AKT. Pharmacological induction of AKT and myosin II can also rescue defects caused by the inhibition of Shh. Together, our results support a model in which the Shh signal is transmitted through myosin II to power effective cellular rearrangement for proper dental epithelial invagination.


Asunto(s)
Adhesión Celular , Movimiento Celular , Proteínas Hedgehog , Miosina Tipo II , Transducción de Señal , Animales , Ratones , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Adhesión Celular/genética , Miosina Tipo II/metabolismo , Miosina Tipo II/genética , Movimiento Celular/genética , Epitelio/metabolismo , Morfogénesis/genética , Diente/metabolismo , Diente/crecimiento & desarrollo , Células Epiteliales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Regulación del Desarrollo de la Expresión Génica
2.
Nat Cell Biol ; 26(4): 519-529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570617

RESUMEN

Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.


Asunto(s)
Incisivo , Transducción de Señal , Animales , Femenino , Embarazo , Diferenciación Celular , Mamíferos , Proliferación Celular , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...