Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1367630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952444

RESUMEN

Purpose: To investigate the therapeutic efficiency of a novel drink termed "Ferment" in cases of ulcerative colitis (UC) and its influence on the gut microbiota. Method: In this study, we developed a complex of mixed fruit juice and lactic acid bacteria referred to as Ferment. Ferment was fed to mice for 35 days, before inducing UC with Dextran Sulfate Sodium Salt. We subsequently investigated the gut microbiome composition using 16S rRNA sequencing. Result: After Ferment treatment, mouse body weight increased, and animals displayed less diarrhea, reduced frequency of bloody stools, and reduced inflammation in the colon. Beneficial bacteria belonging to Ileibacterium, Akkermansia, and Prevotellacea were enriched in the gut after Ferment treatment, while detrimental organisms including Erysipelatoclostridium, Dubosiella, and Alistipes were reduced. Conclusion: These data place Ferment as a promising dietary candidate for enhancing immunity and protecting against UC.

2.
BMC Cancer ; 24(1): 26, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38166756

RESUMEN

BACKGROUND: Epigenetic alterations contribute greatly to the development and progression of colorectal cancer, and effect of aberrant miR-622 expression is still controversial. This study aimed to discover miR-622 regulation in CRC proliferation. METHODS: miR-622 expression and prognosis were analyzed in clinical CRC samples from Nanfang Hospital. miR-622 regulation on cell cycle and tumor proliferation was discovered, and FOLR2 was screened as functional target of miR-622 using bioinformatics analysis, which was validated via dual luciferase assay and gain-of-function and loss-of-function experiments both in vitro and in vivo. RESULTS: miR-622 overexpression in CRC indicated unfavorable prognosis and it regulated cell cycle to promote tumor growth both in vitro and in vivo. FOLR2 is a specific, functional target of miR-622, which negatively correlates with signature genes in cell cycle process to promote CRC proliferation. CONCLUSIONS: miR-622 upregulates cell cycle process by targeting FOLR2 to promote CRC proliferation, proposing a novel mechanism and treatment target in CRC epigenetic regulation of miR-622.


Asunto(s)
Proliferación Celular , Neoplasias Colorrectales , Receptor 2 de Folato , MicroARNs , Humanos , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Epigénesis Genética , Receptor 2 de Folato/genética , Receptor 2 de Folato/metabolismo , Regulación Neoplásica de la Expresión Génica , MicroARNs/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...