Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 4): 119116, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38734289

RESUMEN

Activated sludge comprises diverse bacteria, fungi, and other microorganisms, featuring a rich repertoire of genes involved in antibiotic resistance, pollutant degradation, and elemental cycling. In this regard, hybrid assembly technology can revolutionize metagenomics by detecting greater gene diversity in environmental samples. Nonetheless, the optimal utilization and comparability of genomic information between hybrid assembly and short- or long-read technology remain unclear. To address this gap, we compared the performance of the hybrid assembly, short- and long-read technologies, abundance and diversity of annotated genes, and taxonomic diversity by analysing 46, 161, and 45 activated sludge metagenomic datasets, respectively. The results revealed that hybrid assembly technology exhibited the best performance, generating the most contiguous and longest contigs but with a lower proportion of high-quality metagenome-assembled genomes than short-read technology. Compared with short- or long-read technologies, hybrid assembly technology can detect a greater diversity of microbiota and antibiotic resistance genes, as well as a wider range of potential hosts. However, this approach may yield lower gene abundance and pathogen detection. Our study revealed the specific advantages and disadvantages of hybrid assembly and short- and long-read applications in wastewater treatment plants, and our approach could serve as a blueprint to be extended to terrestrial environments.


Asunto(s)
Metagenómica , Aguas del Alcantarillado , Aguas del Alcantarillado/microbiología , Metagenómica/métodos , Metagenoma , Anotación de Secuencia Molecular , Bacterias/genética , Bacterias/clasificación
2.
Sensors (Basel) ; 23(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38067855

RESUMEN

Home service robots operating indoors, such as inside houses and offices, require the real-time and accurate identification and location of target objects to perform service tasks efficiently. However, images captured by visual sensors while in motion states usually contain varying degrees of blurriness, presenting a significant challenge for object detection. In particular, daily life scenes contain small objects like fruits and tableware, which are often occluded, further complicating object recognition and positioning. A dynamic and real-time object detection algorithm is proposed for home service robots. This is composed of an image deblurring algorithm and an object detection algorithm. To improve the clarity of motion-blurred images, the DA-Multi-DCGAN algorithm is proposed. It comprises an embedded dynamic adjustment mechanism and a multimodal multiscale fusion structure based on robot motion and surrounding environmental information, enabling the deblurring processing of images that are captured under different motion states. Compared with DeblurGAN, DA-Multi-DCGAN had a 5.07 improvement in Peak Signal-to-Noise Ratio (PSNR) and a 0.022 improvement in Structural Similarity (SSIM). An AT-LI-YOLO method is proposed for small and occluded object detection. Based on depthwise separable convolution, this method highlights key areas and integrates salient features by embedding the attention module in the AT-Resblock to improve the sensitivity and detection precision of small objects and partially occluded objects. It also employs a lightweight network unit Lightblock to reduce the network's parameters and computational complexity, which improves its computational efficiency. Compared with YOLOv3, the mean average precision (mAP) of AT-LI-YOLO increased by 3.19%, and the detection precision of small objects, such as apples and oranges and partially occluded objects, increased by 19.12% and 29.52%, respectively. Moreover, the model inference efficiency had a 7 ms reduction in processing time. Based on the typical home activities of older people and children, the dataset Grasp-17 was established for the training and testing of the proposed method. Using the TensorRT neural network inference engine of the developed service robot prototype, the proposed dynamic and real-time object detection algorithm required 29 ms, which meets the real-time requirement of smooth vision.

3.
Environ Pollut ; 307: 119528, 2022 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-35623569

RESUMEN

With the rapid development of nanotechnology in agriculture, there is increasing urgency to assess the impacts of nanoparticles (NPs) on the soil environment. This study merged raw high-throughput sequencing (HTS) data sets generated from 365 soil samples to reveal the potential ecological effects of NPs on soil microbial community by means of metadata analysis and machine learning methods. Metadata analysis showed that treatment with nanoparticles did not have a significant impact on the alpha diversity of the microbial community, but significantly altered the beta diversity. Unfortunately, the abundance of several beneficial bacteria, such as Dyella, Methylophilus, Streptomyces, which promote the growth of plants, and improve pathogenic resistance, was reduced under the addition of synthetic nanoparticles. Furthermore, metadata demonstrated that nanoparticles treatment weakened the biosynthesis ability of cofactors, carriers, and vitamins, and enhanced the degradation ability of aromatic compounds, amino acids, etc. This is unfavorable for the performance of soil functions. Besides the soil heterogeneity, machine learning uncovered that a) the exposure time of nanoparticles was the most important factor to reshape the soil microbial community, and b) long-term exposure decreased the diversity of microbial community and the abundance of beneficial bacteria. This study is the first to use a machine learning model and metadata analysis to investigate the relationship between the properties of nanoparticles and the hazards to the soil microbial community from a macro perspective. This guides the rational use of nanoparticles for which the impacts on soil microbiota are minimized.


Asunto(s)
Microbiota , Nanopartículas , Bacterias , Aprendizaje Automático , Nanopartículas/toxicidad , Suelo/química , Microbiología del Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA