Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Huan Jing Ke Xue ; 44(6): 3117-3129, 2023 Jun 08.
Artículo en Chino | MEDLINE | ID: mdl-37309931

RESUMEN

The short-term reduction of air pollutant emissions is an important emergency control measure for avoiding air pollution exceedances in Chinese cities. However, the impacts of short-term emission reductions on the air qualities in southern Chinese cities in spring has not been fully explored. We analyzed the changes in air quality in Shenzhen, Guangdong before, during, and after a city-wide lockdown associated with COVID-19 control during March 14 to 20, 2022. Stable weather conditions prevailed before and during the lockdown, such that local air pollution was strongly affected by local emissions. In-situ measurements and WRF-GC simulations over the Pearl River Delta (PRD) both showed that, due to reductions in traffic emissions during the lockdown, the concentrations of nitrogen dioxide (NO2), respirable particulate matter (PM10), and fine particulate matters (PM2.5) in Shenzhen decreased by (-26±9.5)%, (-28±6.4)%, and (-20±8.2)%, respectively. However, surface ozone (O3) concentration did not change significantly[(-1.0±6.5)%]. TROPOMI satellite observations of formaldehyde and nitrogen dioxide column concentrations indicated that the ozone photochemistry in the PRD in spring 2022 was mainly controlled by the volatile organic compound (VOCs) concentrations and was not sensitive to the reduction in nitrogen oxide (NOx) concentrations. Reduction in NOx may even have increased O3, because the titration of O3 by NOx was weakened. Due to the small spatial-temporal extent of emission reductions, the air quality effects caused by this short-term urban-scale lockdown were weaker than the air quality effects across China during the widespread COVID-19 lockdown in 2020. Future air quality management in South China cities should consider the impacts of NOx emission reduction on ozone and focus on the co-reduction scenarios of NOx and VOCs.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , COVID-19 , Ozono , Compuestos Orgánicos Volátiles , Humanos , Dióxido de Nitrógeno , Control de Enfermedades Transmisibles , Óxido Nítrico , Material Particulado
2.
Chem Biol Interact ; 364: 110051, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35872049

RESUMEN

Formulations against liver fibrosis (LF) mitigate the progression of hepatitis to cirrhosis. However, notable toxicity of the currently available anti-LF drugs limits their long-term use. In the study, we aimed to investigate the anti-LF effects of theacrine, a purine alkaloid without obvious toxicity, on high-fat diet-, alcohol-, and carbon tetrachloride-induced LF in rats. The results indicated that 10 and 20 mg/kg of theacrine ameliorated hepatic fibrosis, steatosis, and inflammation in LF rats. Mechanistically, theacrine reduced hepatic stellate cell (HSC)-related α-smooth muscle actin expression, and decreased cholesterol accumulation, followed by decreased expression of transforming growth factor-ß1, interleukin (IL)-1ß, and tumor necrosis factor (TNF)-α. In addition, theacrine upregulated the phosphorylation of AMP-activated protein kinase, accompanied by decreased expression of ß-catenin and stearoyl-CoA desaturase 1, and increased the expression of sirtuin 3 (SIRT3). Further investigation revealed that the theacrine-mediated decrease in cholesterol was independent of cholesterol synthesis or low-density lipoprotein (LDL) uptake in hyperlipidemia mice. However, theacrine activated farnesoid X receptor (FXR), a ß-catenin conjugated protein, accompanied with decreased expression of cholesterol 7α-hydroxylase and sterol 12α-hydroxylase. In conclusion, theacrine alleviated experimental LF in rats by lowering cholesterol storage and decreasing cholesterol-related HSC activation. A plausible mechanism of theacrine on cholesterol metabolism may involve activation of SIRT3-FXR signaling pathway followed by decreased intestinal cholesterol absorption.


Asunto(s)
Sirtuina 3 , Animales , Colesterol/metabolismo , Hígado , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/metabolismo , Ratones , Ratas , Transducción de Señal , Sirtuina 3/metabolismo , Ácido Úrico/análogos & derivados , beta Catenina/metabolismo
3.
Ying Yong Sheng Tai Xue Bao ; 22(2): 273-9, 2011 Feb.
Artículo en Chino | MEDLINE | ID: mdl-21608236

RESUMEN

Through sampling site investigation, this paper studied the carbon storage of arbor, herb, and whole vegetation in 10-, 12-, 15-, 26-, and 61-year old Larix gmelinii plantations in Huzhong Forestry Bureau of Great Xing' an Mountains, Northeast China, and 'temporal for spatial' method was employed to approach the variations of the vegetation carbon storage during the growth of the plantations. The results revealed that the vegetation carbon storage in the plantations increased with stand age, and reached 105.69 t x hm(-2) at age of 61 years, representing a marked role as a carbon sink. The L. gmelinii plantations at the ages from 15 to 26 years had the strongest capability in carbon sequestration, in which, the carbon storage in trunk occupied 54.3% -73.9% of the total carbon storage of arbor, and, with the increase of stand age, the trunk's carbon storage to the total carbon storage of arbor as well as the trunk's carbon density increased. As for the other organs, the rate of their carbon storage to the total carbon storage of arbor decreased with stand age, while their carbon density increased first but eventually leveled off or had a slight decrease till at age of 61 years. Based on these results, the rotation age for the L. gmelinii plantations in Great Xing' an Mountains would properly be lengthened to at least 60 years.


Asunto(s)
Dióxido de Carbono/metabolismo , Carbono/análisis , Larix/crecimiento & desarrollo , Larix/metabolismo , Tallos de la Planta/metabolismo , Biomasa , China
4.
Ying Yong Sheng Tai Xue Bao ; 21(12): 3255-65, 2010 Dec.
Artículo en Chino | MEDLINE | ID: mdl-21443017

RESUMEN

Global climate change is one of the most concerned environmental problems in the world since the 1980s, giving significant effects on the plant productivity and the water transport and use patterns. These effects would be reflected in the water use efficiency (WUE) of individual plants, communities, and ecosystems, and ultimately, in the vegetation distribution pattern, species composition, and ecosystem structure. To study the WUE of plants would help to the understanding and forecasting of the responses of terrestrial vegetation to global climate change, and to the adoption of adaptive strategies. This paper introduced the concept of plant WUE and the corresponding measurement techniques at the scales of leaf, individual plant, community, and ecosystem, and reviewed the research progress in the effects of important climatic factors such as elevated atmospheric CO2 concentration, precipitation pattern, nitrogen deposition, and their combination on the plant WUE, as well as the variation characteristics of plant WUE and the adaptive survival strategies of plants under different site conditions. Some problems related to plant WUE research were pointed out, and the future research directions in the context of global climate change were prospected.


Asunto(s)
Cambio Climático , Ecosistema , Plantas/metabolismo , Movimientos del Agua , Agua/metabolismo , Desarrollo de la Planta , Transpiración de Plantas , Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...