Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Med Mushrooms ; 26(3): 1-13, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505899

RESUMEN

Edible mushrooms have rich nutrition (e.g., proteins, dietary fibers, polysaccharides) and they can be potential sources of important ingredients in food processing. However, the cultivation of mushroom fruiting bodies needs a relatively long time, and they can be easily polluted during the growth process. At the same time, a lot of labor and larger planting areas are also required. As we all know, submerged fermentation is a good way to produce edible mushroom mycelia with less environmental pollution and small footprint, which are also rich in nutrition and bioactive components that are used as dietary supplements or health care products in the food industry. Therefore, it can be considered that the replacement of edible mushroom fruiting bodies with edible mushroom mycelia produced through submerged fermentation has great application potential in food production. At present, most of the research about edible mushroom mycelia focuses on the production of bioactive metabolites in fermentation liquid, but there are few reports that concentrate on their applications in food. This paper reviews the research progress of submerged culture of edible mushroom mycelia and their applications in food products.


Asunto(s)
Agaricales , Agaricales/metabolismo , Suplementos Dietéticos , Fermentación , Fibras de la Dieta , Micelio
2.
Appl Microbiol Biotechnol ; 108(1): 7, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38170311

RESUMEN

Carotenoids are natural lipophilic pigments, which have been proven to provide significant health benefits to humans, relying on their capacity to efficiently scavenge singlet oxygen and peroxyl radicals as antioxidants. Strains belonging to the genus Rhodosporidium represent a heterogeneous group known for a number of phenotypic traits including accumulation of carotenoids and lipids and tolerance to heavy metals and oxidative stress. As a representative of these yeasts, Rhodosporidium toruloides naturally produces carotenoids with high antioxidant activity and grows on a wide variety of carbon sources. As a result, R. toruloides is a promising host for the efficient production of more value-added lipophilic compound carotenoids, e.g., torulene and torularhodin. This review provides a comprehensive summary of the research progress on carotenoid biosynthesis in R. toruloides, focusing on the understanding of biosynthetic pathways and the regulation of key enzymes and genes involved in the process. Moreover, the relationship between the accumulation of carotenoids and lipid biosynthesis, as well as the stress from diverse abiotic factors, has also been discussed for the first time. Finally, several feasible strategies have been proposed to promote carotenoid production by R. toruloides. It is possible that R. toruloides may become a critical strain in the production of carotenoids or high-value terpenoids by genetic technologies and optimal fermentation processes. KEY POINTS: • Biosynthetic pathway and its regulation of carotenoids in Rhodosporidium toruloides were concluded • Stimulation of abiotic factors for carotenoid biosynthesis in R. toruloides was summarized • Feasible strategies for increasing carotenoid production by R. toruloides were proposed.


Asunto(s)
Carotenoides , Rhodotorula , Humanos , Carotenoides/metabolismo , Rhodotorula/genética , Levaduras/metabolismo , Vías Biosintéticas
3.
Biochem Pharmacol ; 219: 115929, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38000559

RESUMEN

Reductive stress is characterized by an excess of cellular electron donors and can be linked with various human pathologies including cancer. We developed melanoma cell lines resistant to reductive stress agents: rotenone (ROTR), n-acetyl-L-cysteine, (NACR), or dithiothreitol (DTTR). Resistant cells divided more rapidly and had intracellular homeostatic redox-couple ratios that were shifted towards the reduced state. Resistance caused alterations in general cell morphology, but only ROTR cells had significant changes in mitochondrial morphology with higher numbers that were more isolated, fragmented and swollen, with greater membrane depolarization and decreased numbers of networks. These changes were accompanied by lower basal oxygen consumption and maximal respiration rates. Whole cell flux analyses and mitochondrial function assays showed that NACR and DTTR preferentially utilized tricarboxylic acid (TCA) cycle intermediates, while ROTR used ketone body substrates such as D, L-ß-hydroxybutyric acid. NACR and DTTR cells had constitutively decreased levels of reactive oxygen species (ROS), although this was accompanied by activation of nuclear factor erythroid 2-related factor 2 (Nrf2), with concomitant increased expression of the downstream gene products such as glutathione S-transferase P (GSTP). Further adaptations included enhanced expression of endoplasmic reticulum proteins controlling the unfolded protein response (UPR). Although expression patterns of these UPR proteins were distinct between the resistant cells, a trend implied that resistance to reductive stress is accompanied by a constitutively increased UPR phenotype in each line. Overall, tumor cells, although tolerant of oxidative stress, can adapt their energy and survival mechanisms in lethal reductive stress conditions.


Asunto(s)
Estrés del Retículo Endoplásmico , Respuesta de Proteína Desplegada , Humanos , Estrés del Retículo Endoplásmico/fisiología , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Línea Celular , Proteínas/metabolismo
4.
Crit Rev Food Sci Nutr ; : 1-13, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37811651

RESUMEN

Probiotics are not only a food supplement, but they have shown great potential in their nutritional, health and therapeutic effects. To maximize the beneficial effects of probiotics, it is commonly achieved by adding prebiotics. Prebiotics primarily comprise indigestible carbohydrates, specific peptides, proteins, and lipids, with oligosaccharides being the most extensively studied prebiotics. However, these rapidly fermenting oligosaccharides have many drawbacks and can cause diarrhea and flatulence in the body. Hence, the exploration of new prebiotic is of great interest. Besides oligosaccharides, protein hydrolysates have been demonstrated to enhance the expression of beneficial properties of probiotics. Consequently, this paper outlines the mechanism underlying the action of protein hydrolysates on probiotics, as well as the advantageous impacts of proteins hydrolysates derived from various food sources on probiotics. In addition, this paper also reviews the currently reported biological activities of protein hydrolysates. The aim is a theoretical basis for the development and implementation of novel prebiotics.

5.
Adv Cancer Res ; 160: 107-132, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37704286

RESUMEN

Microsomal glutathione transferase 1 (MGST1) is a member of the MAPEG family (membrane associated proteins in eicosanoid and glutathione metabolism), defined according to enzymatic activities, sequence motifs, and structural properties. MGST1 is a homotrimer which can bind three molecules of glutathione (GSH), with one modified to a thiolate anion displaying one-third-of-sites-reactivity. MGST1 has both glutathione transferase and peroxidase activities. Each is based on stabilizing the GSH thiolate in the same active site. MGST1 is abundant in the liver and displays a broad subcellular distribution with high levels in endoplasmic reticulum and mitochondrial membranes, consistent with a physiological role in protection from reactive electrophilic intermediates and oxidative stress. In this review paper, we particularly focus on recent advances made in understanding MGST1 activation, induction, broad subcellular distribution, and the role of MGST1 in apoptosis, ferroptosis, cancer progression, and therapeutic responses.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Apoptosis , Glutatión , Glutatión Transferasa
6.
Adv Cancer Res ; 160: 83-106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37704292

RESUMEN

Protein disulfide isomerase (PDI) and its superfamilies are mainly endoplasmic reticulum (ER) resident proteins with essential roles in maintaining cellular homeostasis, via thiol oxidation/reduction cycles, chaperoning, and isomerization of client proteins. Since PDIs play an important role in ER homeostasis, their upregulation supports cell survival and they are found in a variety of cancer types. Despite the fact that the importance of PDI to tumorigenesis remains to be understood, it is emerging as a new therapeutic target in cancer. During the past decade, several PDI inhibitors has been developed and commercialized, but none has been approved for clinical use. In this review, we discuss the properties and redox regulation of PDIs within the ER and provide an overview of the last 5 years of advances regarding PDI inhibitors.


Asunto(s)
Neoplasias , Proteína Disulfuro Isomerasas , Humanos , Carcinogénesis , Supervivencia Celular , Oxidación-Reducción
7.
Pharmacol Res ; 196: 106899, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37648102

RESUMEN

While recent targeted and immunotherapies in malignant melanoma are encouraging, most patients acquire resistance, implicating a need to identify additional drug targets to improve outcomes. Recently, attention has been given to pathways that regulate redox homeostasis, especially the lipid peroxidase pathway that protects cells against ferroptosis. Here we identify microsomal glutathione S-transferase 1 (MGST1), a non-selenium-dependent glutathione peroxidase, as highly expressed in malignant and drug resistant melanomas and as a specific determinant of metastatic spread and therapeutic sensitivity. Loss of MGST1 in mouse and human melanoma enhanced cellular oxidative stress, and diminished glycolysis, oxidative phosphorylation, and pentose phosphate pathway. Gp100 activated pmel-1 T cells killed more Mgst1 KD than control melanoma cells and KD cells were more sensitive to cytotoxic anticancer drugs and ferroptotic cell death. When compared to control, mice bearing Mgst1 KD B16 tumors had more CD8+ T cell infiltration with reduced expression of inhibitory receptors and increased cytokine response, large reduction of lung metastases and enhanced survival. Targeting MGST1 alters the redox balance and limits metastases in melanoma, enhancing the therapeutic index for chemo- and immunotherapies.


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Melanoma , Humanos , Ratones , Animales , Glutatión Transferasa/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Estrés Oxidativo , Neoplasias Pulmonares/tratamiento farmacológico , Melanoma/tratamiento farmacológico , Glutatión/metabolismo
8.
J Biol Chem ; 299(8): 104920, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37321450

RESUMEN

Recent advancements in the treatment of melanoma are encouraging, but there remains a need to identify additional therapeutic targets. We identify a role for microsomal glutathione transferase 1 (MGST1) in biosynthetic pathways for melanin and as a determinant of tumor progression. Knockdown (KD) of MGST1 depleted midline-localized, pigmented melanocytes in zebrafish embryos, while in both mouse and human melanoma cells, loss of MGST1 resulted in a catalytically dependent, quantitative, and linear depigmentation, associated with diminished conversion of L-dopa to dopachrome (eumelanin precursor). Melanin, especially eumelanin, has antioxidant properties, and MGST1 KD melanoma cells are under higher oxidative stress, with increased reactive oxygen species, decreased antioxidant capacities, reduced energy metabolism and ATP production, and lower proliferation rates in 3D culture. In mice, when compared to nontarget control, Mgst1 KD B16 cells had less melanin, more active CD8+ T cell infiltration, slower growing tumors, and enhanced animal survival. Thus, MGST1 is an integral enzyme in melanin synthesis and its inhibition adversely influences tumor growth.


Asunto(s)
Glutatión Transferasa , Melaninas , Melanoma , Animales , Humanos , Ratones , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Melaninas/biosíntesis , Melanoma/genética , Melanoma/inmunología , Melanoma/fisiopatología , Pez Cebra/metabolismo , Oxidación-Reducción , Ratones Endogámicos C57BL , Línea Celular Tumoral , Proliferación Celular/genética
9.
Biomolecules ; 13(4)2023 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-37189435

RESUMEN

In humans, the cytosolic glutathione S-transferase (GST) family of proteins is encoded by 16 genes presented in seven different classes. GSTs exhibit remarkable structural similarity with some overlapping functionalities. As a primary function, GSTs play a putative role in Phase II metabolism by protecting living cells against a wide variety of toxic molecules by conjugating them with the tripeptide glutathione. This conjugation reaction is extended to forming redox sensitive post-translational modifications on proteins: S-glutathionylation. Apart from these catalytic functions, specific GSTs are involved in the regulation of stress-induced signaling pathways that govern cell proliferation and apoptosis. Recently, studies on the effects of GST genetic polymorphisms on COVID-19 disease development revealed that the individuals with higher numbers of risk-associated genotypes showed higher risk of COVID-19 prevalence and severity. Furthermore, overexpression of GSTs in many tumors is frequently associated with drug resistance phenotypes. These functional properties make these proteins promising targets for therapeutics, and a number of GST inhibitors have progressed in clinical trials for the treatment of cancer and other diseases.


Asunto(s)
Glutatión Transferasa , Neoplasias , Humanos , COVID-19/genética , Inhibidores Enzimáticos/farmacología , Glutatión/metabolismo , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Neoplasias/genética , Neoplasias/tratamiento farmacológico
10.
Microbiol Spectr ; : e0436122, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36719233

RESUMEN

Dunaliella salina is the most salt-tolerant eukaryote and has the highest ß-carotene content, but its carotenoid synthesis pathway is still unclear, especially the synthesis of lycopene, the upstream product of ß-carotene. In this study, DsGGPS, DsPSY, DsPDS, DsZISO, DsZDS, DsCRTISO, and DsLYCB genes were cloned from D. salina and expressed in Escherichia coli. A series of carotenoid engineering E. coli strains from phytoene to ß-carotene were obtained. ZISO was first identified from Chlorophyta, while CRTISO was first isolated from algae. It was found that DsZISO and DsCRTISO were essential for isomerization of carotenoids in photosynthetic organisms and could not be replaced by photoisomerization, unlike some plants. DsZDS was found to have weak beta cyclization abilities, and DsLYCB was able to catalyze 7,7',9,9'-tetra-cis-lycopene to generate 7,7',9,9'-tetra-cis-ß-carotene, which had not been reported before. A new carotenoid 7,7',9,9'-tetra-cis-ß-carotene, the beta cyclization product of prolycopene, was discovered. Compared with the bacterial-derived carotenoid synthesis pathway, there is higher specificity and greater efficiency of the carotenoid synthesis pathway in algae. This research experimentally confirmed that the conversion of phytoene to lycopene in D. salina was similar to that of plants and different from bacteria and provided a new possibility for the metabolic engineering of ß-carotene. IMPORTANCE The synthesis mode of all trans-lycopene in bacteria and plants is clear, but there are still doubts in microalgae. Dunaliella is the organism with the highest ß-carotene content, and plant-type and bacterial-type enzyme genes have been found in its carotenoid metabolism pathway. In this study, the entire plant-type enzyme gene was completely cloned into Escherichia coli, and high-efficiency expression was obtained, which proved that carotenoid synthesis of algae is similar to that of plants. In bacteria, CRT can directly catalyze 4-step continuous dehydrogenation to produce all trans-lycopene. In plants, four enzymes (PDS, ZISO, ZDS, and CRTISO) are involved in this process. Although a carotenoid synthetase similar to that of bacteria has been found in algae, it does not play a major role. This research reveals the evolutionary relationship of carotenoid metabolism in bacteria, algae, and plants and is of methodologically innovative significance for molecular evolution research.

11.
Crit Rev Food Sci Nutr ; 63(25): 7288-7310, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35238261

RESUMEN

The edible fungi have both edible and medicinal functions, in which terpenoids are one of the most important active ingredients. Terpenoids possess a wide range of biological activities and show great potential in the pharmaceutical and healthcare industries. In this review, the diverse biological activities of edible fungi terpenoids were summarized with emphasis on the mechanism of anti-cancer and anti-inflammation. Subsequently, this review focuses on advances in knowledge and understanding of the biosynthesis of terpenoids in edible fungi, especially in the generation of sesquiterpenes, diterpenes, and triterpenes. This paper is aim to provide an overview of biological functions and biosynthesis developed for utilizing the terpenoids in edible fungi.


Asunto(s)
Diterpenos , Sesquiterpenos , Triterpenos , Terpenos , Hongos
12.
Microb Biotechnol ; 15(12): 2982-2991, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36134724

RESUMEN

The medicinal mushroom Cordyceps militaris contains abundant valuable bioactive ingredients that have attracted a great deal of attention in the pharmaceutical and cosmetic industries. However, the development of this valuable mushroom faces the obstacle of lacking powerful genomic engineering tools. Here, by excavating the endogenous tRNA-processed element, introducing the extrachromosomal plasmid and alongside with homologous template, we develop a marker-free CRISPR-Cas9-TRAMA genomic editing system to achieve the multiplex gene precise editing and large synthetic cluster deletion in C. militaris. We further operated editing in the synthetases of cordycepin and ergothioneine to demonstrate the application of Cas9-TRAMA system in protein modification, promoter strength evaluation and 10 kb metabolic synthetic cluster deletion. The Cas9-TRAMA system provides a scalable method for excavating the valuable metabolic resource of medicinal mushrooms and constructing a mystical cellular pathway to elucidate the complex cell behaviours of the edible mushroom.


Asunto(s)
Agaricales , Cordyceps , Sistemas CRISPR-Cas , Cordyceps/genética , Cordyceps/metabolismo , Agaricales/genética , Edición Génica/métodos , ADN/metabolismo , Eliminación de Gen
13.
Microb Cell Fact ; 21(1): 169, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999536

RESUMEN

BACKGROUND: Cordyceps militaris is a traditional medicinal fungus contains a variety of functional ingredients and has been developed as an important mushroom food recently. Ergothioneine, one of the antioxidative compounds in C. militaris, is benefits on aging-related diseases and therefore became a novel functional food nutritive fortifier. Currently, the main diet source of ergothioneine is mushroom food. However, the mushroom farming faces the problems such as rather low ingredient yield and spontaneous degeneration associated fruiting body that restricts large scale production of ergothioneine. RESULTS: In this study, we excavated the ergothioneine synthetases in mushroom and modified the genes in C. militaris to construct a new ergothioneine synthesis pathway. By further introducing this pathway into C. militaris genome, we succeeded to increase the ingredients' production of engineering strain, the highest amount of ergothioneine and cordycepin were up to 2.5 g/kg dry weight and 2 g/L, respectively. Additionally, the expression of ergothioneine synthetase genes in the shape-mutated degenerative C. militaris could recover the ability of degenerative strain to produce high amount of ingredients, suggesting the metabolic regulation of ergothioneine might release the symptom of mushroom degeneration. CONCLUSION: This study reveals a new pathway to fulfill the market needs of functional mushroom food and food fortifier ergothioneine. It implied the mycelium of C. militaris could be engineered as a novel medicinal mushroom food which could produce higher amount of valuable ingredients.


Asunto(s)
Agaricales , Cordyceps , Ergotioneína , Cordyceps/genética , Cuerpos Fructíferos de los Hongos/metabolismo , Redes y Vías Metabólicas , Micelio/metabolismo
14.
Front Physiol ; 13: 772313, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35464086

RESUMEN

Mitochondrial malfunction is a hallmark of many diseases, including neurodegenerative disorders, cardiovascular and lung diseases, and cancers. We previously found that alveolar progenitor cells, which are more resistant to cigarette smoke-induced injury than the other cells of the lung parenchyma, upregulate the mtDNA-encoded small non-coding RNA mito-ncR-805 after exposure to smoke. The mito-ncR-805 acts as a retrograde signal between the mitochondria and the nucleus. Here, we identified a region of mito-ncR-805 that is conserved in the mammalian mitochondrial genomes and generated shorter versions of mouse and human transcripts (mmu-CR805 and hsa-LDL1, respectively), which differ in a few nucleotides and which we refer to as the "functional bit". Overexpression of mouse and human functional bits in either the mouse or the human lung epithelial cells led to an increase in the activity of the Krebs cycle and oxidative phosphorylation, stabilized the mitochondrial potential, conferred faster cell division, and lowered the levels of proapoptotic pseudokinase, TRIB3. Both oligos, mmu-CR805 and hsa-LDL1 conferred cross-species beneficial effects. Our data indicate a high degree of evolutionary conservation of retrograde signaling via a functional bit of the D-loop transcript, mito-ncR-805, in the mammals. This emphasizes the importance of the pathway and suggests a potential to develop this functional bit into a therapeutic agent that enhances mitochondrial bioenergetics.

15.
Food Funct ; 13(1): 227-241, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34877949

RESUMEN

Many studies have demonstrated the protective effect of ergothioneine (EGT), the unique sulfur-containing antioxidant found in mushrooms, on several aging-related diseases. Nevertheless, to date, no single study has explored the potential role of EGT in the lifespan of animal models. We show here that EGT consistently extends fly lifespan in diverse genetic backgrounds and both sexes, as well as in a dose and gender-dependent manner. Additionally, EGT is shown to increases the climbing activity of flies, enhance acetylcholinesterase (AchE) activity, and maintain the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG)of aged flies. The increase in lifespan by EGT is gut microorganism dependent. We proposed potential mechanisms of lifespan extension in Drosophila by EGT through RNA-seq analysis: preservation of the normal status of the central nervous system via the coordination of cholinergic neurotransmission, tyrosine metabolism, and peroxisomal proteins, regulation of autophagic activity by altering the lysosomal protein CTSD, and the preservation of normal mitochondrial function through controlled substrate feeding into the tricarboxylic acid (TCA) cycle, the major energy-yielding metabolic process in cells.


Asunto(s)
Colinérgicos/farmacología , Ergotioneína/farmacología , Ácidos Grasos/metabolismo , Longevidad/efectos de los fármacos , Tirosina/metabolismo , Animales , Antioxidantes/farmacología , Drosophila melanogaster , Femenino , Disulfuro de Glutatión/metabolismo , Masculino , Estrés Oxidativo/efectos de los fármacos
16.
Eur J Cancer ; 155: 85-96, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34371445

RESUMEN

AIM: The prediction model of postoperative survival for single large and huge hepatocellular carcinoma (SLH-HCC, diameter > 5.0 cm) without portal vein tumour thrombus has not been well established. This study aimed to develop novel nomograms to predict postoperative recurrence and survival of these patients. METHODS: Data from 2469 patients with SLH-HCC who underwent curative resection from January 2005 to December 2015 in China were retrospectively collected. Specifically, nomograms of recurrence-free survival (RFS) and overall survival (OS) using data from a training cohort were developed with the Cox regression model (n = 1012). The modes were verified in an internal validation cohort (n = 338) and an external cohort comprising four tertiary institutions (n = 1119). RESULTS: The nomograms of RFS and OS based on tumour clinicopathologic features (diameter, differentiation, microvascular invasion, α-fetoprotein), operative factors (preoperative transcatheter arterial chemoembolisation therapy, scope of liver resection and intraoperative blood transfusion), underlying liver function (albumin-bilirubin grade) and systemic inflammatory or immune status (neutrophil-to-lymphocyte ratio) achieved high C-indexes of 0.85 (95% confidence interval [CI], 0.79-0.91) and 0.86 (95% CI, 0.79-0.93) in the training cohort, respectively, which were significantly higher than those of the five conventional HCC staging systems (0.62-0.73 for RFS, 0.63-0.75 for OS). The nomograms were validated in the internal cohort (0.83 for RFS, 0.84 for OS) and external cohort (0.87 for RFS, 0.88 for OS) and had well-fitted calibration curves. Our nomograms accurately stratified patients with SLH-HCC into low-, intermediate- and high-risk groups of postsurgical recurrence and mortality. CONCLUSIONS: The two nomograms achieved optimal prediction for postsurgical recurrence and OS for patients with SLH-HCC after curative resection.


Asunto(s)
Carcinoma Hepatocelular/cirugía , Neoplasias Hepáticas/cirugía , Nomogramas , Adolescente , Adulto , Carcinoma Hepatocelular/patología , Femenino , Humanos , Neoplasias Hepáticas/patología , Masculino , Persona de Mediana Edad , Pronóstico , Estudios de Validación como Asunto , Adulto Joven
17.
Adv Cancer Res ; 152: 305-327, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34353441

RESUMEN

Cisplatin has been a mainstay of cancer chemotherapy since the 1970s. Despite its broad anticancer potential, its clinical use has regularly been constrained by kidney toxicities. This review details those biochemical pathways and metabolic conversions that underlie the kidney toxicities. A wide range of redox events contribute to the eventual physiological consequences of drug activities.


Asunto(s)
Antineoplásicos , Neoplasias , Antineoplásicos/farmacología , Antioxidantes/metabolismo , Cisplatino/metabolismo , Cisplatino/farmacología , Glutatión/metabolismo , Glutatión/farmacología , Humanos , Riñón/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Estrés Oxidativo
18.
Food Res Int ; 147: 110540, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34399517

RESUMEN

The Pleurotus tuoliensis (Pt), a precious edible mushroom with high economic value, is widely popular for its rich nutrition and meaty texture. However, rapid postharvest deterioration depreciates the commercial value of Pt and severely restricts its marketing. By RNA-Seq transcriptomic and TMT-MS MS proteomic, we study the regulatory mechanisms of the postharvest storage of Pt fruitbodies at 25 ℃ for 0, 38, and 76 h (these three-time points recorded as groups A, B, and C, respectively). 2,008 DEGs (Differentially expressed genes) were identified, and all DEGs shared 265 factors with all DEPs (Differentially expressed proteins). Jointly, the DEGs and DEPs of two-omics showed that the category of the metabolic process contained the most DEGs and DEPs in the biological process by GO (Gene Ontology) classification. The top 17 KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways with the highest sum of DEG and DEP numbers in groups B/A (38 h vs. 0 h) and C/A (76 h vs. 0 h) and pathways closely related to energy metabolism were selected for analysis and discussion. Actively expression of CAZymes (Carbohydrate active enzymes), represented by laccase, chitinase, and ß-glucanase, directly leads to the softening of fruitbodies. The transcription factor Rlm1 of 1,3-ß-glucan synthase attracted attention with a significant down-regulation of gene levels in the C/A group. Laccase also contributes, together with phenylalanine ammonia-lyase (PAL), to the discoloration reaction in the first 76 h of the fruitbodies. Significant expression of several crucial enzymes for EMP (Glycolysis), Fatty acid degradation, and Valine, leucine and isoleucine degradation at the gene or protein level supply substantial amounts of acetyl-CoA to the TCA cycle. Citrate synthase (CS), isocitrate dehydrogenase (ICDH), and three mitochondrial respiratory complexes intensify respiration and produce high levels of ROS (Reactive oxygen species) by significant up-regulation. In the ROS scavenging system, only Mn-SOD was significantly up-regulated at the gene level and was probably interacted with Hsp60 (Heat shock protein 60), which was significantly up-regulated at the protein level, to play a dominant role in antioxidation. Three types of stresses - cell wall stress, starvation, and oxidative stress - were suffered by Pt fruitbodies postharvest, resulting in cell cycle arrest and gene expression disorder.


Asunto(s)
Pleurotus , Proteoma , Pleurotus/genética , Proteómica , Transcriptoma
19.
Hepatol Commun ; 5(6): 976-991, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34141984

RESUMEN

The electron transfer flavoprotein (ETF) complex, made up of the ETF alpha subunit (ETFA), ETF beta subunit (ETFB), and ETF dehydrogenase (ETFDH), regulates fatty acid ß-oxidation activity while scavenging leaked electrons through flavin adenine dinucleotide (FAD)/reduced form FAD (FADH2) redox reactions in mitochondria. Here, we hypothesized that ETF dysfunction-mediated FAD deficiency may result in increased mitochondrial oxidative stress and steatosis and subsequent liver injury. We report that etfa haploinsufficiency caused hyperlipidemia, hypercholesterolemia, and hepatic steatosis and injury in adult zebrafish. Further, etfa+/ - mutant livers had reduced levels of FAD and glutathione and an increase in reactive oxygen species. Because FAD depletion might be critical in the pathogenesis of the liver lesion identified in etfa+/ - mutants, we used riboflavin to elevate FAD levels in the liver and found that riboflavin supplementation significantly suppressed hepatic steatosis and injury in etfa+/ - mutants through suppression of oxidative stress and de novo lipogenesis in the liver. Additionally, we found that adenosine triphosphate-linked mitochondrial oxygen consumption and mitochondrial membrane potential were reduced in etfa+/ - primary hepatocytes and that riboflavin supplementation corrected these defects. Conclusion: FAD depletion caused by etfa haploinsufficiency plays a key role in hepatic steatosis and oxidative stress-mediated hepatic injury in adult zebrafish. This raises the possibility that people with ETFA haploinsufficiency have a high risk for developing liver disease.

20.
Enzyme Microb Technol ; 148: 109808, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34116757

RESUMEN

Cordyceps militaris carotenoids are widely used as food additives, animal feed supplements, and so on. However, the biosynthetic pathway of carotenoids in C. militaris is still obscure. In this paper, changes of mycelial morphology and carotenoid accumulation of C. militaris were investigated under oxidative (KMnO4) and osmotic stress (NaCl). Subsequently, qRT-PCR was employed to detect the expression levels of genes related to carotenogenesis to explore the mechanism of adaptation to abiotic stress. When the concentrations of KMnO4 and NaCl were respectively 0.4 g/L and 2 g/L, carotenoid accumulation reached a maximum of 6616.82 ±â€¯666.43 µg/g and 6416.77 ±â€¯537.02 µg/g. Under the oxidative stress condition of KMnO4, the expressions of psy and hsp70 increased significantly compared with control. Besides, the genes fus3 and hog1 were significantly enriched in the MAPK signal pathway. Compared with the control group, there was no significant difference in expression of psy in the NaCl group. Moreover, the accumulation of triacylglycerols may contribute significantly to the increase in carotenoid accumulation. The increased accumulation of antioxidant carotenoids induced under environmental stress is to resist oxidative conditions. Fus3 and Hog1 signaling in the MAPK pathway was activated and subsequently take effects on the resistance of oxidative condition by regulating related metabolic processes. C. militaris resist the stress of high oxygen by producing a large amount of glycerol and carotenoids when this fungus is cultured in a saline environment for a long time.


Asunto(s)
Agaricales , Cordyceps , Carotenoides , Cordyceps/genética , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA