Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1291630, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38606074

RESUMEN

Climate change, characterized by rising atmospheric CO2 levels and temperatures, poses significant challenges to global crop production. Sweet sorghum, a prominent C4 cereal extensively grown in arid areas, emerges as a promising candidate for sustainable bioenergy production. This study investigated the responses of photosynthesis and leaf-scale water use efficiency (WUE) to varying light intensity (I) in sweet sorghum under different temperature and CO2 conditions. Comparative analyses were conducted between the A n-I, g s-I, T r-I, WUEi-I, and WUEinst-I models proposed by Ye et al. and the widely utilized the non-rectangular hyperbolic (NRH) model for fitting light response curves. The Ye's models effectively replicated the light response curves of sweet sorghum, accurately capturing the diminishing intrinsic WUE (WUEi) and instantaneous WUE (WUEinst) trends with increasing I. The fitted maximum values of A n, g s, T r, WUEi, and WUEinst and their saturation light intensities closely matched observations, unlike the NRH model. Despite the NRH model demonstrating high R 2 values for A n-I, g s-I, and T r-I modelling, it returned the maximum values significantly deviating from observed values and failed to generate saturation light intensities. It also inadequately represented WUE responses to I, overestimating WUE. Across different leaf temperatures, A n, g s, and T r of sweet sorghum displayed comparable light response patterns. Elevated temperatures increased maximum A n, g s, and T r but consistently declined maximum WUEi and WUEinst. However, WUEinst declined more sharply due to the disproportionate transpiration increase over carbon assimilation. Critically, sweet sorghum A n saturated at current atmospheric CO2 levels, with no significant gains under 550 µmol mol-1. Instead, stomatal closure enhanced WUE under elevated CO2 by coordinated g s and T r reductions rather than improved carbon assimilation. Nonetheless, this response diminished under simultaneously high temperature, suggesting intricate interplay between CO2 and temperature in modulating plant responses. These findings provide valuable insights into photosynthetic dynamics of sweet sorghum, aiding predictions of yield and optimization of cultivation practices. Moreover, our methodology serves as a valuable reference for evaluating leaf photosynthesis and WUE dynamics in diverse plant species.

2.
Front Plant Sci ; 15: 1332875, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38476692

RESUMEN

The models used to describe the light response of electron transport rate in photosynthesis play a crucial role in determining two key parameters i.e., the maximum electron transport rate (J max) and the saturation light intensity (I sat). However, not all models accurately fit J-I curves, and determine the values of J max and I sat. Here, three models, namely the double exponential (DE) model, the non-rectangular hyperbolic (NRH) model, and a mechanistic model developed by one of the coauthors (Z-P Ye) and his coworkers (referred to as the mechanistic model), were compared in terms of their ability to fit J-I curves and estimate J max and I sat. Here, we apply these three models to a series of previously collected Chl a fluorescence data from seven photosynthetic organisms, grown under different conditions. Our results show that the mechanistic model performed well in describing the J-I curves, regardless of whether photoinhibition/dynamic down-regulation of photosystem II (PSII) occurs. Moreover, both J max and I sat estimated by this model are in very good agreement with the measured data. On the contrary, although the DE model simulates quite well the J-I curve for the species studied, it significantly overestimates both the J max of Amaranthus hypochondriacus and the I sat of Microcystis aeruginosa grown under NH4 +-N supply. More importantly, the light intensity required to achieve the potential maximum of J (J s) estimated by this model exceeds the unexpected high value of 105 µmol photons m-2 s-1 for Triticum aestivum and A. hypochondriacus. The NRH model fails to characterize the J-I curves with dynamic down-regulation/photoinhibition for Abies alba, Oryza sativa and M. aeruginosa. In addition, this model also significantly overestimates the values of J max for T. aestivum at 21% O2 and A. hypochondriacus grown under normal condition, and significantly underestimates the values of J max for M. aeruginosa grown under NO3 -N supply. Our study provides evidence that the 'mechanistic model' is much more suitable than both the DE and NRH models in fitting the J-I curves and in estimating the photosynthetic parameters. This is a powerful tool for studying light harvesting properties and the dynamic down-regulation of PSII/photoinhibition.

3.
Front Plant Sci ; 14: 1234462, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711288

RESUMEN

Investigation on intrinsic properties of photosynthetic pigment molecules participating in solar energy absorption and excitation, especially their eigen-absorption cross-section (σ ik) and effective absorption cross-section (σ ' ik), is important to understand photosynthesis. Here, we present the development and application of a new method to determine these parameters, based on a mechanistic model of the photosynthetic electron flow-light response. The analysis with our method of a series of previously collected chlorophyll a fluorescence data shows that the absorption cross-section of photosynthetic pigment molecules has different values of approximately 10-21 m2, for several photosynthetic organisms grown under various conditions: (1) the conifer Abies alba Mill., grown under high light or low light; (2) Taxus baccata L., grown under fertilization or non-fertilization conditions; (3) Glycine max L. (Merr.), grown under a CO2 concentration of 400 or 600 µmol CO2 mol-1 in a leaf chamber under shaded conditions; (4) Zea mays L., at temperatures of 30°C or 35°C in a leaf chamber; (5) Osmanthus fragrans Loureiro, with shaded-leaf or sun-leaf; and (6) the cyanobacterium Microcystis aeruginosa FACHB905, grown under two different nitrogen supplies. Our results show that σ ik has the same order of magnitude (approximately 10-21 m2), and σ ' ik for these species decreases with increasing light intensity, demonstrating the operation of a key regulatory mechanism to reduce solar absorption and avoid high light damage. Moreover, compared with other approaches, both σ ik and σ ' ik can be more easily estimated by our method, even under various growth conditions (e.g., different light environment; different CO2, NO2, O2, and O3 concentrations; air temperatures; or water stress), regardless of the type of the sample (e.g., dilute or concentrated cell suspensions or leaves). Our results also show that CO2 concentration and temperature have little effect on σ ik values for G. max and Z. mays. Consequently, our approach provides a powerful tool to investigate light energy absorption of photosynthetic pigment molecules and gives us new information on how plants and cyanobacteria modify their light-harvesting properties under different stress conditions.

4.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1995-2005, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37694485

RESUMEN

Light response curve of photosynthesis (An-I curve) is a useful modeling tool to investigate how photosynthesis reacts with different abiotic factors, which would help quantify the response of photosynthetic rate to photosynthetically active radiation. Based on the mathematical characteristics of photosynthesis An-I models, we reviewed the advantages of using these model in practice and the potential caveats. We proposed the development of new mechanistic photosynthesis An-I models based on the primary light response and discussed its advantages in the field of plant ecology and physiology. Photosynthesis has three main steps, including the primary reaction, the assimilatory power forms, and the carbon assimilation. Changes in each step could directly affect the photochemical efficiency and carbon assimilation in photosynthesis. The primary reaction consists of a series of physical processes that are related to light energy absorption and utilization, including the absorption of light energy, the change of quantum state, and the transfer and de-excitation of exciton resonance of light-trapping pigment molecules. How-ever, the empirical photosynthesis An-I models can not explain some scenarios. For example, the non-photochemical quenching in plants increases with increasing light intensity in a non-linear manner. Further, the life-time of singlet chlorophyll molecules can be extended when plant light-harvesting pigment molecules absorb excessive light energy but would not be immediately used for the photochemical reaction. Meanwhile, the parameters obtained by fitting the mechanistic An-I curve model can not only reflect the primary photochemical reaction characteristics of plants, but also describe the physical characteristics of plant light harvesting pigment molecules, such as the number of light harvesting pigment molecules in the excited state (Nk) and effective light energy absorption cross-section (σik'). This can be used to further investigate the physical characteristics of light harvesting pigment molecules, including the light-response of Nk and σik' and the average life time of light harvesting pigment molecules in the lowest exciting state (τmin). In addition, it would be necessary to determine how to incorporate abiotic factors, such as temperature and CO2 concentration, into the mechanistic An-I curve model, as well as to determine the association between the abiotic factors and light harvesting pigment molecules, such as Nk, σik', and τmin.


Asunto(s)
Clorofila , Fotosíntesis , Luz , Carbono , Ecología
5.
Front Plant Sci ; 11: 581851, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042194

RESUMEN

Accurately describing the light response curve of electron transport rate (J-I curve) and allocation of electron flow for ribulose biphosphate (RuBP) carboxylation (J C-I curve) and that for oxygenation (J O-I curve) is fundamental for modeling of light relations of electron flow at the whole-plant and ecosystem scales. The non-rectangular hyperbolic model (hereafter, NH model) has been widely used to characterize light response of net photosynthesis rate (A n; A n-I curve) and J-I curve. However, NH model has been reported to overestimate the maximum A n (A nmax) and the maximum J (J max), largely due to its asymptotic function. Meanwhile, few efforts have been delivered for describing J C-I and J O-I curves. The long-standing challenge on describing A n-I and J-I curves have been resolved by a recently developed A n-I and J-I models (hereafter, Ye model), which adopt a nonasymptotic function. To test whether Ye model can resolve the challenge of NH model in reproducing J-I, J C-I and J O-I curves over light-limited, light-saturated, and photoinhibitory I levels, we compared the performances of Ye model and NH model against measurements on two C3 crops (Triticum aestivum L. and Glycine max L.) grown in field. The results showed that NH model significantly overestimated the A nmax and J max for both species, which can be accurately obtained by Ye model. Furthermore, NH model significantly overestimated the maximum electron flow for carboxylation (J C-max) but not the maximum electron flow for oxygenation (J O-max) for both species, disclosing the reason underlying the long-standing problem of NH model-overestimation of J max and A nmax.

6.
Front Plant Sci ; 11: 374, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32411151

RESUMEN

Light intensity (I) is the most dynamic and significant environmental variable affecting photosynthesis (A n), stomatal conductance (g s), transpiration (T r), and water-use efficiency (WUE). Currently, studies characterizing leaf-scale WUE-I responses are rare and key questions have not been answered. In particular, (1) What shape does the response function take? (2) Are there maximum intrinsic (WUEi; WUEi-max) and instantaneous WUE (WUEinst; WUEinst-max) at the corresponding saturation irradiances (I i-sat and I inst-sat)? This study developed WUEi-I and WUEinst-I models sharing the same non-asymptotic function with previously published A n-I and g s-I models. Observation-modeling intercomparison was conducted for field-grown plants of soybean (C3) and grain amaranth (C4) to assess the robustness of our models versus the non-rectangular hyperbola models (NH models). Both types of models can reproduce WUE-I curves well over light-limited range. However, at light-saturated range, NH models overestimated WUEi-max and WUEinst-max and cannot return I i-sat and I inst-sat due to its asymptotic function. Moreover, NH models cannot describe the down-regulation of WUE induced by high light, on which our models described well. The results showed that WUEi and WUEinst increased rapidly within low range of I, driven by uncoupled photosynthesis and stomatal responsiveness. Initial response rapidity of WUEi was higher than WUEinst because the greatest increase of A n and T r occurred at low g s. C4 species showed higher WUEi-max and WUEinst-max than C3 species-at similar I i-sat and I inst-sat. Our intercomparison highlighted larger discrepancy between WUEi-I and WUEinst-I responses in C3 than C4 species, quantitatively characterizing an important advantage of C4 photosynthetic pathway-higher A n gain but lower T r cost per unit of g s change. Our models can accurately return the wealth of key quantities defining species-specific WUE-I responses-besides A n-I and g s-I responses. The key advantage is its robustness in characterizing these entangled responses over a wide I range from light-limited to light-inhibitory light intensities, through adopting the same analytical framework and the explicit and consistent definitions on these responses. Our models are of significance for physiologists and modelers-and also for breeders screening for genotypes concurrently achieving maximized photosynthesis and optimized WUE.

7.
J Plant Physiol ; 240: 153002, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31254740

RESUMEN

Suppression of photorespiration by low O2 concentrations (Method 1) and simultaneous measurements of gas exchange and chlorophyll fluorescence (Method 2) are often used to estimate leaf photorespiration rate (Rp) of C3 plants. However, it is largely unknown whether Method 1 and Method 2 can be used equivalently in estimating Rp. Using a field experiment on two wheat cultivars (T. aestivum JM22 and T. aestivum Z39-118) whose leaf gas exchange and chlorophyll fluorescence at low and normal O2 concentrations (2% versus 21% O2) were simultaneously measured across a wide range of light intensities (I), this study assessed the impacts of the two measures on Rp and its response under changing irradiance conditions. All the above quantities increased with the increasing I until reaching the cultivar-specific maximum values and the corresponding saturation light intensities. However, there were significant differences between Rp estimated by Method 1 and Method 2 at the I range from 150 to 2000 µmol m-2 s-1 for T. aestivum JM22 and from 150 to 1000 µmol m-2 s-1 for T. aestivum Z39-118. These findings demonstrated that the two methods cannot be used equivalently under changing irradiance conditions.


Asunto(s)
Luz , Fotosíntesis/efectos de la radiación , Transpiración de Plantas/efectos de la radiación , Triticum/fisiología , Clorofila/fisiología , Fluorescencia , Oxígeno/análisis , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , Triticum/efectos de la radiación
8.
Front Plant Sci ; 9: 742, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29922316

RESUMEN

In dioecious woody plants, females often make a greater reproductive effort than male individuals at the cost of lower growth rate. We hypothesized that a greater reproductive effort of female compared with male Taxus baccata individuals would be associated with lower female photochemical capacity and higher activity of antioxidant enzymes. Differences between the genders would change seasonally and would be more remarkable under nutrient deficiency. Electron transport rate (ETRmax), saturation photosynthetic photon flux corresponding to maximum electron transport rate (PPFsat), quantum yield of PSII photochemistry at PPFsat (ΦPPFsat), and chlorophyll a fluorescence and activity of antioxidant enzymes were determined in needles of T. baccata female and male individuals growing in the experiment with or without fertilization. The effects of seasonal changes and fertilization treatment on photochemical parameters, photosynthetic pigments concentration, and antioxidant enzymes were more pronounced than the effects of between-sexes differences in reproductive efforts. Results showed that photosynthetic capacity expressed as ETRmax and ΦPPFsat and photosynthetic pigments concentrations decreased and non-photochemical quenching of fluorescence (NPQ) increased under nutrient deficiency. Fertilized individuals were less sensitive to photoinhibition than non-fertilized ones. T. baccata female and male individuals did not differ in photochemical capacity, but females showed higher maximum quantum yield of PSII photochemistry (Fv/Fm) than males. The activity of guaiacol peroxidase (POX) was also higher in female than in male needles. We concluded that larger T. baccata female reproductive effort compared with males was not at the cost of photochemical capacity, but to some extent it could be due to between-sexes differences in ability to protect the photosynthetic apparatus against photoinhibition with antioxidants.

9.
Ying Yong Sheng Tai Xue Bao ; 29(2): 583-591, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29692074

RESUMEN

The availability of CO2, a substrate for photosynthesis, affects the photosynthesis process and photosynthate production. Using the Li-6400-40B, we measured the photosynthetic electron transport rate and the photosynthetic light-response curves of soybean (Glycine max) leaves at different CO2 concentrations (300, 400, 500 and 600 µmol·mol-1). By fitting these parameters with a mechanistic model characterizing the light response of photosynthesis, we obtained aseries of photosynthetic parameters, eco-physiological parameters, as well as the physical parameters of photosynthetic pigments. The results showed that the electronic use efficiency, maximum electron transport rate, and maximum net photosynthetic rate increased with the increase of CO2 concentration. The light compensation point and dark respiration rate decreased with the increase of CO2 concentration. In addition, the light-use efficiency and intrinsic (instantaneous) water-use efficiency increased with the increase of CO2 concentration, and their values differed significantly among different CO2 concentrations. There was no significant difference on the maximum carboxylation efficiency among different CO2 concentrations. Those results suggested that CO2 concentration could affect the primary light reaction of photosynthesis in soybean leaves, and thus higher CO2 concentration could decrease the minimum average lifespan of excitons at the lowest excited state, which would enhance the velocity of light energy transport and the use efficiency of photosynthetic electron flow.


Asunto(s)
Dióxido de Carbono , Glycine max/fisiología , Fotosíntesis , Transporte de Electrón , Hojas de la Planta
10.
Photosynth Res ; 127(3): 307-19, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26297354

RESUMEN

Oxygen effects have long been ambiguous: exacerbating, being indifferent to, or ameliorating the net photoinactivation of Photosystem II (PS II). We scrutinized the time course of PS II photoinactivation (characterized by rate coefficient k i) in the absence of repair, or when recovery (characterized by k r) occurred simultaneously in CO2 ± O2. Oxygen exacerbated photoinactivation per se, but alleviated it by mediating the utilization of electrons. With repair permitted, the gradual net loss of functional PS II during illumination of leaves was better described phenomenologically by introducing τ, the time for an initial k r to decrease by half. At 1500 µmol photons m(-2) s(-1), oxygen decreased the initial k r but increased τ. Similarly, at even higher irradiance in air, there was a further decrease in the initial k r and increase in τ. These observations are consistent with an empirical model that (1) oxygen increased k i via oxidative stress but decreased it by mediating the utilization of electrons; and (2) reactive oxygen species stimulated the degradation of photodamaged D1 protein in PS II (characterized by k d), but inhibited the de novo synthesis of D1 (characterized by k s), and that the balance between these effects determines the net effect of O2 on PS II functionality.


Asunto(s)
Luz , Oxígeno/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Spinacia oleracea/metabolismo , Simulación por Computador , Transporte de Electrón/efectos de los fármacos , Transporte de Electrón/efectos de la radiación , Cinética , Lincomicina/farmacología , Modelos Biológicos , Oxígeno/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/efectos de la radiación , Spinacia oleracea/efectos de los fármacos , Spinacia oleracea/efectos de la radiación , Factores de Tiempo
11.
Ying Yong Sheng Tai Xue Bao ; 27(8): 2543-2550, 2016 Aug.
Artículo en Chino | MEDLINE | ID: mdl-29733142

RESUMEN

Light-use efficiency (LUE) is an important parameter to assess light energy absorption of leaf. Especially, it is a key factor to affect production and quality of ecosystem. A model of LUE was developed based on a mechanistic model of light-response of photosynthesis. The maximum LUE (LUEmax) and corresponding saturation irradiance (IL-sat) were deduced according to the LUE mo-del. At CO2 concentrations of 350, 450, 550 and 650 µmol·mol-1, the light-response curves of LUE of tomato seedling leaves were simulated. The results showed that the model of LUE described well the response curves of light use efficiency of tomato seedling leaves at four CO2 concentrations. LUE of tomato seedling leaves reached the maximum value at photosynthetically active radiation between 70-90 µmol·m-2·s-1. There were no difference of LUEmax and IL-sat at 550 and 650 µmol·mol-1. Regarding this phenomenon, it was hypothesized that the photosynthetic functions of tomato seedling leaves had acclimated to the low irradiance in greenhouse so that the intrinsic cha-racteristic of light-harvesting pigments such as the effective light absorption cross-section of light-harvesting pigments and ratio of pigment molecules in the excited state to ground state had hardly changed at high CO2 concentrations.


Asunto(s)
Luz , Hojas de la Planta/efectos de la radiación , Solanum lycopersicum/efectos de la radiación , Dióxido de Carbono/efectos de la radiación , Fotosíntesis , Pigmentos Biológicos , Plantones/efectos de la radiación
12.
New Phytol ; 199(1): 110-120, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23521402

RESUMEN

A new mechanistic model of the photosynthesis-light response is developed based on photosynthetic electron transport via photosystem II (PSII) to specifically describe light-harvesting characteristics and associated biophysical parameters of photosynthetic pigment molecules. This model parameterizes 'core' characteristics not only of the light response but also of difficult to measure physical parameters of photosynthetic pigment molecules in plants. Application of the model to two C3 and two C4 species grown under the same conditions demonstrated that the model reproduced extremely well (r(2) > 0.992) the light response trends of both electron transport and CO2 uptake. In all cases, the effective absorption cross-section of photosynthetic pigment molecules decreased with increasing light intensity, demonstrating novel operation of a key mechanism for plants to avoid high light damage. In parameterizing these previously difficult to measure characteristics of light harvesting in higher plants, the model provides a new means to understand the mechanistic processes underpinning variability of CO2 uptake, for example, photosynthetic down-regulation or reversible photoinhibition induced by high light and photoprotection. However, an important next step is validating this parameterization, possibly through application to less structurally complex organisms such as single-celled algae.


Asunto(s)
Modelos Teóricos , Complejo de Proteína del Fotosistema II/metabolismo , Fenómenos Fisiológicos de las Plantas , Capsicum/fisiología , Dióxido de Carbono/metabolismo , Transporte de Electrón/fisiología , Luz , Fotosíntesis , Pigmentos Biológicos/metabolismo , Sapindaceae/fisiología , Sorghum/fisiología , Zea mays/fisiología
13.
Planta ; 237(3): 837-47, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23138268

RESUMEN

Models describing the light response of photosynthetic electron transport rate (ETR) are routinely used to determine how light absorption influences energy, reducing power and yields of primary productivity; however, no single model is currently able to provide insight into the fundamental processes that implicitly govern the variability of light absorption. Here we present development and application of a new mechanistic model of ETR for photosystem II based on the light harvesting (absorption and transfer to the core 'reaction centres') characteristics of photosynthetic pigment molecules. Within this model a series of equations are used to describe novel biophysical and biochemical characteristics of photosynthetic pigment molecules and in turn light harvesting; specifically, the eigen-absorption cross-section and the minimum average lifetime of photosynthetic pigment molecules in the excited state, which describe the ability of light absorption of photosynthetic pigment molecules and retention time of excitons in the excited state but are difficult to be measured directly. We applied this model to a series of previously collected fluorescence data and demonstrated that our model described well the light response curves of ETR, regardless of whether dynamic down-regulation of PSII occurs, for a range of photosynthetic organisms (Abies alba, Picea abies, Pinus mugo and Emiliania huxleyi). Inherent estimated parameters (e.g. maximum ETR and the saturation irradiance) by our model are in very close agreement with the measured data. Overall, our mechanistic model potentially provides novel insights into the regulation of ETR by light harvesting properties as well as dynamical down-regulation of PSII.


Asunto(s)
Complejos de Proteína Captadores de Luz/metabolismo , Luz , Modelos Biológicos , Fotosíntesis/efectos de la radiación , Pigmentos Biológicos/metabolismo , Abies/fisiología , Abies/efectos de la radiación , Absorción/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Complejo de Proteína del Fotosistema II/metabolismo , Picea/fisiología , Picea/efectos de la radiación , Pinus/fisiología , Pinus/efectos de la radiación
14.
Photosynth Res ; 112(1): 31-7, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22430129

RESUMEN

A mathematical formulation of the relationship between optical absorption coefficient of photosynthetic pigment molecules and light intensity was developed. It showed that physical parameters of photosynthetic pigment molecule (i.e., light absorption cross-section of photosynthetic pigment molecule, its average lifetime in the excited state, total photosynthetic pigment molecules, the statistical weight, or degeneracy of energy level of photosynthetic pigment molecules in the ground state and in the excited state) influenced on both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules. Moreover, it also showed that both the light absorption coefficient and effective light absorption cross-section of photosynthetic pigment molecules were not constant, they decreased nonlinearly with light intensity increasing. The occupation numbers of photosynthetic pigment molecules in the excited states increased nonlinearly with light intensity increasing.


Asunto(s)
Procesos Fotoquímicos , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Hojas de la Planta/metabolismo , Absorción , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Transporte de Electrón , Metabolismo Energético , Transferencia de Energía , Fluorescencia , Luz , Modelos Teóricos , Fotosíntesis , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...