Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 16(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891416

RESUMEN

This study investigated a blend of poly (lactic acid) (PLA) and Saqqez gum, with a weight ratio of 70:30, respectively, along with two plasticizers, acetyl tributyl citrate (ATBC) and polyethylene glycol (PEG), at three different concentrations (14%, 16% and 18% by weight of the PLA). The blend was analyzed using differential scanning calorimetry (DSC), scanning electron microscopy (SEM), tensile tests, water-absorption behavior (coefficients of water absorption, sorption, diffusion and permeability of the samples during 240 h) and chemical resistance (exposure to 1 mol/L HCl and 1 mol/L NaOH for 240 h). The desired elastomer blend was then used to prepare natural chewing gum, which was subsequently subjected to texture profile analyzer (TPA) tests and sensory evaluation. The results showed that the addition of both plasticizers increased the tensile properties of the blend. Compared to neat PLA, all the blends exhibited an increase in elongation at break and a decrease in yield strength, with the maximum elongation at break (130.6%) and the minimum yield strength (12.2 MPa) observed in the blend containing 16% ATBC. Additionally, all the thermal attributes studied, including Tg, Tc and Tm, were lower than those of neat PLA, and the Tg values deviated from the values predicted via Fox's equation. SEM images of the blends confirmed that plasticization improved the homogeneity and distribution of the components in the blend structure. PEG 18% and ATBC 16% exhibit the highest and lowest water-absorption behavior, respectively. Regarding chemical resistance, all blends showed weight gain when exposed to HCl, while no weight loss was observed for resistance to NaOH. The chewing gum sample obtained similar values for the mentioned tests compared to the commercial control sample. Overall, the results indicate that plasticization enhances the structure and performance of the PLA/Saqqez gum blend and further investigation is warranted.

2.
BMC Oral Health ; 23(1): 957, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38041064

RESUMEN

This study aimed to formulate and characterize the experimental lollipops containing chitosan- zinc oxide nanoparticles (CH-ZnO NPs) and investigate their antimicrobial effects against some cariogenic bacteria. The CH-ZnO NPs were synthesized and characterized by X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR) analysis, and Transmission electron microscope (TEM). Then, four groups were made, including lollipops coated with 2 and 4 ml of CH-ZnO NPs, 0.7 ml CH-ZnO NPs incorporated lollipops, and those with no CH-ZnO NPs. Their antibacterial effectiveness against Streptococcus mutans and Lactobacillus acidophilus was evaluated by direct contact test and tissue culture plate method in planktonic and biofilm phases, respectively. Chlorhexidine mouthrinse (CHX) was used as a positive control group. In the planktonic phase, the antibacterial properties of both groups coated with CH-ZnO NPs were comparable and significantly higher than incorporated ones. There was no significant difference between CHX and the lollipops coated with 4 ml of NPs against S. mutans and CHX and two coated groups against L. acidophilus. None of the experimental lollipops in the biofilm phase could reduce both bacteria counts. The experimental lollipops coated with 2 and 4 ml of CH-ZnO NPs could reveal favorable antimicrobial properties against two cariogenic bacteria in the planktonic phase.


Asunto(s)
Antiinfecciosos , Quitosano , Óxido de Zinc , Humanos , Streptococcus mutans , Lactobacillus acidophilus , Quitosano/farmacología , Óxido de Zinc/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Biopelículas , Pruebas de Sensibilidad Microbiana
3.
J Texture Stud ; 54(6): 789-807, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37584385

RESUMEN

The gum base mass is a colloidal system and the main component of chewing gum; which is an inert, non-nutritious, indigestible, and insoluble part of chewing gum, therefore this substance does not dissolve in the mouth when chewed. The gum base plays the most crucial role in determining the mechanical properties, flexibility, and overall quality of chewing gum. Moreover, it acts as a delivery system to transport sweeteners, flavorings, and other ingredients in chewing gum. Despite the massive market for chewing gum and the provision of a list of the main ingredients in gum base by the Code of Federal Regulations and some international organizations, there is a lack of information about chewing gum base and its compositions in the literature. Therefore, the purpose of this review is to present an overview of the characteristics, ingredients and applications, production process, assessment, and modification methods of the gum base along with the advances and approaches in biodegradability. Biodegradability concerns play a promoting role in the research and development of chewing gum and its applications in the food industry, medical and dental sectors. Reviewing previous studies can surely help for faster development of this path.


Asunto(s)
Goma de Mascar , Boca , Edulcorantes
4.
Colloids Surf B Biointerfaces ; 224: 113181, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36822115

RESUMEN

Licorice (Glycyrrhiza glabra) is a useful plant of the family Fabaceae, with sweet-tasting roots. The root extract of this plant is rich in saponins, so it can be considered a source of natural surfactants. This research provides some applicable information about the dynamic surface tension and foam behavior of aqueous solutions of licorice root extract (LRE). The pendant drop shape analysis was utilized to study the surface tension and dilational surface rheology of LRE at the water/air interface. The Bikerman type experiment was used to measure foamability and foam stability of aqueous LRE solutions. The equilibrium surface tensions reveal that the LRE contains surface-active components and is capable of reducing the surface tension by 25 mN/m at the critical aggregation concentration (CAC). The surface dilational visco-elasticity measurements proved that the adsorption layers are predominantly of elastic nature. Also the foamability and foam stability show a meaningful correlation with the dynamic surface properties. This study aims to contribute to the development of appropriate utilization of the benefits provided by a biosurfactant source in foam-related commercial applications.


Asunto(s)
Inhibidores Enzimáticos , Tensoactivos , Propiedades de Superficie , Tensión Superficial , Reología , Adsorción , Agua
5.
Int J Biol Macromol ; 223(Pt A): 511-523, 2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36368359

RESUMEN

Starch in native form has limited application due to functional and physicochemical characteristics. To overcome these limitations, starch can be modified by non-thermal technologies such as high hydrostatic pressure (HHP). This study investigates high-pressure-induced gelatinization and the effect of this process on the structural, functional, morphological, pasting, thermal, physical and rheological properties of millet starch. The suspension of millet starch and water was pressurized at 200, 400 and 600 MPa for 10, 20 and 30 min to modify the starch in terms of structure, morphology, some physicochemical and rheological properties. Swelling strength and starch solubility decreased as a result of treatment with HHP. All treatments caused to increase in water holding capacity of the starch (from 0.66 % for native starch to 2.19 % for 600 MPa-30 min). Thermal analysis showed a decrease in gelatinization temperature and enthalpy of gelatinization and the pasting properties showed a decrease in the peak viscosity after HHP treatment. In addition, HHP treatment caused to increase in the hydration ability of starch by creating porosity and gaps in the granule surface and increasing the specific surface area. HHP application resulted in an increase in the peak time and pasting temperature and a decrease in breakdown and peak viscosities, final viscosity and setback viscosity in comparison with native starch of millet. The starch sample treated with 600 MPa for 30 min had the lowest syneresis and retrogradation ability. Increasing pressure and the time led to an increase in the elastic nature of the starch samples. According to the results, it is possible to increase usage area of starches in the food industry by improving its technological with HHP. This green physical technology can influence the quality parameters of starch, which can provide benefits for product machining and economic purposes.


Asunto(s)
Pennisetum , Almidón , Almidón/química , Pennisetum/química , Viscosidad , Reología , Agua
6.
J Sci Food Agric ; 102(3): 1056-1065, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34312850

RESUMEN

BACKGROUND: Foam-gels are one of the most important multicomponent-model systems in aerated confectionery, and an investigation of their microstructure is desirable. In this research, the structure-function relationship of xanthan gum/guar gum (XG/GG) and licorice (Glycyrrhiza glabra) root extract powder (LEP) was investigated in a high-sugar medium. Foam-gel systems were prepared at 4:10% to 8:20% ratios of LEP to biopolymer. RESULTS: The results show that increasing the LEP content reduced both the melting point and enthalpy, probably due to higher overrun and weaker junctions. Boosting the XG/GG ratio led the enhancement of mechanical properties, whereas increasing the LEP concentration weakened all textural parameters, which could be due to the poor structure of the network in the presence of the foaming agent, increased moisture content and overrun. In the whipped mixture samples containing 10 g kg-1 XG/GG, higher foaming capacity was observed. By increasing the level of biopolymers, smaller and more uniform air cells were formed according to a scanning electron microscopical study. At higher concentration of LEP, smaller bubbles and increased porosity were seen, which could be attributed to the availability of surfactant in the interfacial layer. CONCLUSION: Maximum structural strength was achieved at a 4:20 ratio of LEP to XG/GG. In rheological experiments, pseudoplastic behavior was seen in all samples. Generally, this model system can be simulated for other herbal extracts containing natural surfactants such as saponins. Achieving a more detailed understanding of these structures and their interactions could help in formulating novel food products. © 2021 Society of Chemical Industry.


Asunto(s)
Galactanos/química , Glycyrrhiza/química , Mananos/química , Extractos Vegetales/química , Gomas de Plantas/química , Polisacáridos Bacterianos/química , Azúcares/química , Galactanos/aislamiento & purificación , Mananos/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Gomas de Plantas/aislamiento & purificación , Raíces de Plantas/química , Polisacáridos Bacterianos/aislamiento & purificación , Reología , Azúcares/aislamiento & purificación , Tensoactivos/química , Tensoactivos/aislamiento & purificación , Viscosidad
7.
Food Sci Nutr ; 9(3): 1432-1440, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33747457

RESUMEN

This study was aimed at evaluating the suitability of sesame paste as an ingredient in white compound chocolate using response surface methodology. A D-optimal combined mixture-process design with three mixture components, sesame paste (15%-30% w/w), soy flour (0%-15% w/w), and milk powder (0%-15% w/w) under variable amount of emulsifier was used to optimize textural (hardness, cohesiveness, and adhesive force) and thermal (T onset and T m) properties of white compound chocolate containing sesame paste. The results showed that the linear effect of all the mixture components was significant (p < .05) on the responses. Applying a desirability function method, the optimum proportion of mixture components, and emulsifier level were as follows: sesame paste 15.5% w/w, milk powder 7.5% w/w, soy four 7% w/w, and emulsifier 0% w/w, respectively. At optimum point, hardness, cohesiveness, adhesive force, T onset, and T m were 367.07 (N), 0.63, 8.46 (N), 28.1 (°C), and 33.7 (°C), respectively. The predicted values were confirmed through validation experiment.

8.
Heliyon ; 6(7): e04350, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32671261

RESUMEN

The aim of the present investigation was to explore the possibility of developing a fruit snack formulation based on dried fig powder and chocolate-coated. Dried Fig (Ficus carica L.) powder with a maximum particle size of 354 µm and the lowest compaction force was formulated as the core. Persian gum was prepared at the concentrations of 1.5, 2 and 2.5% and xanthan gum was prepared at the levels of 0.25, 0.39 and 0.54% as the middle layer to the coating of the core. Regarding rheological assessments, sugar-free chocolate containing 29.3% isomalt was selected for the coating of the outer chocolate shell in the entitled snack. Textural analysis showed that coating of the core with hydrocolloids decreased hardness and adhesiveness of the samples (p < 0.05). It was also observed that increasing the xanthan gum and Persian gum concentration led to the reduction of adhesiveness in the snacks (p < 0.05). Coating of cores with hydrocolloids resulted in lower thickness of the chocolate outer shell, as well (p < 0.05). Results of the sensory evaluation tests demonstrated that, the samples with hydrocolloid coating were the most preferred ones by the panelists.

9.
Food Sci Nutr ; 8(4): 2025-2034, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328269

RESUMEN

Physical destruction and thermal treatment are pretreatment methods used to destroy cell membranes and facilitate the release of solute extraction. In this paper, sugar extraction from carrots under different pulsed electric field conditions (field strengths of 250, 750, and 1,250 V/cm, pulse numbers of 10, 45, and 80, and pulse frequency of 1 Hz) and simultaneous thermal treatments (at 20, 45, and 70°C) were studied based on full factorial design experiments with 27 runs. Carrot slices treated with PEF were suspended in water at the desired temperature and liquid-to-solid weight ratio of L/S = 2. Immediately after the PEF treatment, a significant increase in solute extraction was observed due to the permeability of cell membrane that could lead to the enhancement of solute convection on the surface of the tissue. Optimum extraction parameters were obtained as follows: PEF with the field intensity of 750 V/cm, 10 pulses, and temperature of 45°C.

10.
Food Sci Nutr ; 8(2): 933-941, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32148802

RESUMEN

This research was conducted to evaluate encapsulated d-limonene perception and release in rock candy. Microcapsules with wall materials of 75/25 of gum Arabic/Maltodextrin by 20% of wall materials) were produced for using in rock candy. To evaluate the flavor release from rock candy by time-intensity method, a model system was developed and time-intensity sensory evaluation was conducted by trained sensory panelists in order to determine the effect of three different matrices (water, water and flavored rock candy, and water with flavored rock candy and citric acid (pH = 3) at three serving temperatures (10, 45, and 75°C) on the perception of d-limonene release. Results showed that release of d-limonene from flavored rock candy with acid citric (pH = 3) at 75°C had the highest perceived sensation whereas the matrix of microcapsule in water at 10°C had the lowest perception. On the other hand, increasing the temperature from 10 to 75°C had significant effects on the release and perception of d-limonene (p < .05). Headspace gas chromatography-mass spectrophotometry confirmed results from time-intensity sensory evaluation, which indicated that the release of d-limonene increased in the presence of sucrose and citric acid (pH = 3).

11.
Carbohydr Polym ; 232: 115809, 2020 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-31952608

RESUMEN

Structure-rheology relationship of binary composite gel (BCG) systems of alginate/guar gum and basil seed gum/guar gum at ratio 2:1 at different Ca2+ levels (2-10%) were evaluated. The highest value of structural strength was obtained at 2 % of Ca2+, which can be attributed to its stronger network as assessed by rheological experiments. Mechanical spectra of the alginate/guar gels explained pseudoplastic behavior with a highly interconnected elastic gel structure. The mechanical strength as well as other textural properties of the alginate and basil seed gum network was functions of its stoichiometry with calcium ions. Whereas alginate/guar gels showed an elongated globular denser structure as determined by SEM, the BSG/guar gels showed a rigid cubic as the pieces of a puzzle, presenting a softer and weaker gel structure. The alginate/guar gels showed less porosity without syneresis or shrinkage during storage as supported by its high elasticity and rigidity.

12.
Heliyon ; 5(9): e02438, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31528750

RESUMEN

Essential oils (EOs) are known for uses in various fields such as perfume, cosmetic, pharmaceutical and food industries. Agricultural wastes are among the resources of EOs that produced and disposed of in large quantities annually. Hence, in this study, for the first time, EOs available from pistachio fruit [fruit pistachio shells (FPS) and fruit pistachio cluster (FPC)] were used to the extraction of EOs. The Clevenger device and distilled water were used to extract EOs. The amount of total phenolic compounds (TPC) by Folin-ciocalteu reagent and the radical scavenging ability (RSA%) of FPS and FPC extracted by the soaking method were also measured. The RSA% of EOs and extracts in the presence of DPPH free radicals was evaluated by the IC50 index. Chemical composition of EOs detected by mass spectrometric gas chromatography. Notwithstanding amounts of extraction efficiency by water in the soaking method from FPS and FPC was 4.6% and 3.2% respectively, EOs extraction efficiency from FPC and FPS was 2.10% and 0.13% respectively. TPC in FPS and FPC was 958.38 and 796.25 mgGA/100g dry material respectively. The amount of IC50 of FPS was 3760.69 ppm and near to RSA% of BHT (2354.36 ppm). Statistical difference was observed between the RSA of EOs and positive control antioxidant (P < 0.05). The RSA of antioxidant extracts and TPC showed positively correlated. The major compounds identified in FPS were the D-limonene, α-thujene and terpinolene, abundance respectively, and the major components of FPC were α-thujene and α-pinene, abundance respectively.

13.
Food Sci Nutr ; 7(5): 1595-1605, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139372

RESUMEN

In this study, the effect of guar gum (0.5%-1% w/w), sodium alginate (1%-2% w/w), and calcium chloride (2%-8% w/w) on textural properties of restructuring pimiento strips (RPS) was investigated. The gums were added to the pimiento strip formula, and different quality attributes including rupture force, energy to fracture, hardness, adhesiveness, cohesiveness, springiness, and chewiness were determined. Based on the textural properties of RPS, it was optimized by response surface methodology. All the textural properties of RPS were found to be significantly affected by alteration in guar gum, sodium alginate, and calcium chloride. The regression models for product's response like rupture force and energy to fracture were highly significant. Results showed that restructured pimiento strip formula containing guar gum 1% w/w along with sodium alginate 2% w/w and 8% calcium chloride improved the textural and tensile properties. According to the RSM results on the textural properties of RPS, it is feasible to achieve the high elasticity and rigidity of pimiento strips as well as obtain the ability to tolerate thermal and mechanical stresses with appreciable textural integrity during processing such as pasteurization that would be investigated in another work.

14.
Food Chem ; 277: 664-673, 2019 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-30502201

RESUMEN

Gluten-free bread was fortified with modified dietary fibers (wheat bran, resistant starch and inulin) and their effects on water mobility, friction coefficient, thermal behavior, crystalline pattern and textural properties were evaluated. Moreover, time-intensity evaluation was used to study temporal dynamics of sensory attributes of fortified-breads. Dietary fibers increased gelatinization temperature while decreasing gelatinization enthalpy, more notably when inulin was used. X-ray diffraction patterns of bread showed the appearance of new peaks after addition of resistant starch and wheat bran, coinciding with an increase in crumb hardness. In contrast, inulin considerably decreased starch crystallinity in the bread, resulting in a softer crumb. Faster decay and shifting of protons to shorter times were found with incorporation of dietary fibers. Friction coefficient determined by tribology measurement was higher in the breads containing resistant starch and wheat bran compared to other samples. Pearson's correlation analysis indicated the sensory attributes of firmness, chewiness and dryness were positively correlated with instrumental findings. Time-intensity evaluation revealed inulin-fortified bread had the lowest firmness and chewiness with less dryness, whereas resistant starch-fortified bread showed the highest intensity of these descriptors.


Asunto(s)
Pan/análisis , Fibras de la Dieta/análisis , Geles/química , Dureza , Inulina/química , Espectroscopía de Protones por Resonancia Magnética , Umbral Sensorial , Almidón/química , Temperatura , Triticum/química , Triticum/metabolismo , Agua/química , Difracción de Rayos X
15.
J Texture Stud ; 50(2): 155-164, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30575035

RESUMEN

Textural, mechanical, microstructural, and thermal properties of reconstituted pimiento alginate-guar gels subjected to thermal and mechanical stresses during pasteurization process were investigated. Alginate-guar gelling system at ratio 2:1 at different calcium chloride concentrations (2-8%) and varying acid conditions including citric and lactic acid 1% were evaluated. Textural profile analysis parameters viz. hardness, springiness, gumminess, cohesiveness, adhesiveness as well as mechanical properties, structural, thermal, and morphological characteristics of pimiento strips were examined. Gel strength and elasticity of pimiento strips were increased at higher calcium levels. Fracturability was decreased clearly revealed the gel system, regain its strength in spite of high pulp content (25%) and can maintain its own structure. Increase in hardness and reduction in springiness showed loss of elasticity, which may be attributed to the gel shrinkage during thermal processing, making it more compact and dense. Therefore, the restructured pimiento strips were completely thermo stable at pasteurization temperature. By increasing alginate and calcium level in the pimiento strip, glass transition temperature was reduced from 112 to 98°C. Fourier transform infrared spectroscopy studies confirmed that the gel network structure at acidic conditions was stable and acid type did not has significant effect on the chemical interactions. The microstructural results showed ellipsoidal and compact structure in which can be an evidence of high elasticity and rigidity of pimiento gels. These results completely approved the high elasticity and rigidity of the pimiento strips and their ability to sustain successfully thermal and mechanical stresses with appreciable textural integrity during processing such as pasteurization. PRACTICAL APPLICATIONS: Restructured pimiento strip for stuffing into cocktail olives is a challenging problem in binary composite hydrogels of alginate and guar gum. The strips should be designed to be strong enough to handle mechanically and cut easily without tearing. Furthermore, it had to withstand to pasteurization process and be flexible to bend like a hairpin into the pit hole of olive. In addition, it also had low syneresis and shrinkage that the strips not fall out of the olive hole during storage. In the view point of marketing and nutritional aspects, it is more advantageous to develop a restructured fruit gel systems several times higher than the limiting 10% pulp because of its weak structure. Therefore, alginate-gel systems containing 25% pimiento pulp were evaluated at different levels of calcium chloride and thermal processing.


Asunto(s)
Alginatos/química , Capsicum/química , Cyamopsis/química , Geles/química , Adhesividad , Calcio/química , Fenómenos Químicos , Elasticidad , Frutas/química , Galactanos , Dureza , Mananos , Gomas de Plantas , Reología , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...