RESUMEN
This study emphasizes the innovative application of FePt and Cu core-shell nanostructures with increased lattice microstrain, coupled with Au single-atom catalysis, in significantly enhancing â¢OH generation for catalytic tumor therapy. The combination of core-shell with increased lattice microstrain and single-atom structures introduces an unexpected boost in hydroxyl radical (â¢OH) production, representing a pivotal advancement in strategies for enhancing reactive oxygen species. The creation of a core-shell structure, FePt@Cu, showcases a synergistic effect in â¢OH generation that surpasses the combined effects of FePt and Cu individually. Incorporating atomic Au with FePt@Cu/Au further enhances â¢OH production. Both FePt@Cu and FePt@Cu/Au structures boost the O2 â H2O2 â â¢OH reaction pathway and catalyze Fenton-like reactions. This enhancement is underpinned by DFT theoretical calculations revealing a reduced O2 adsorption energy and energy barrier, facilitated by lattice mismatch and the unique catalytic activity of single-atom Au. Notably, the FePt@Cu/Au structure demonstrates remarkable efficacy in tumor suppression and exhibits biodegradable properties, allowing for rapid excretion from the body. This dual attribute underscores its potential as a highly effective and safe cancer therapeutic agent.
Asunto(s)
Cobre , Oro , Catálisis , Oro/química , Cobre/química , Humanos , Animales , Ratones , Radical Hidroxilo/química , Antineoplásicos/química , Antineoplásicos/farmacología , Platino (Metal)/química , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/química , Nanoestructuras/química , Hierro/química , Línea Celular Tumoral , Peróxido de Hidrógeno/química , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Nanopartículas del Metal/químicaRESUMEN
This study innovatively addresses challenges in enhancing upconversion efficiency in lanthanide-based nanoparticles (UCNPs) by exploiting Shewanella oneidensis MR-1, a microorganism capable of extracellular electron transfer. Electroactive membranes, rich in c-type cytochromes, are extracted from bacteria and integrated into membrane-integrated liposomes (MILs), encapsulating core-shelled UCNPs with an optically inactive shell, forming UCNP@MIL constructs. The electroactive membrane, tailored to donate electrons through the inert shell, independently boosts upconversion emission under near-infrared excitation (980 or 1550 nm), bypassing ligand-sensitized UCNPs. The optically inactive shell restricts energy migration, emphasizing electroactive membrane electron donation. Density functional theory calculations elucidate efficient electron transfer due to the electroactive membrane hemes' highest occupied molecular orbital being higher than the valence band maximum of the optically inactive shell, crucial for enhancing energy transfer to emitter ions. The introduction of a SiO2 insulator coating diminishes light enhancement, underscoring the importance of unimpeded electron transfer. Luminescence enhancement remains resilient to variations in emitter or sensitizing ions, highlighting the robustness of the electron transfer-induced phenomenon. However, altering the inert shell material diminishes enhancement, emphasizing the role of electron transfer. This methodology holds significant promise for diverse biological applications. UCNP@MIL offers an advantage in cellular uptake, which proves beneficial for cell imaging.
Asunto(s)
Electrones , Shewanella , Shewanella/metabolismo , Transporte de Electrón , Liposomas/química , Nanopartículas/química , Elementos de la Serie de los Lantanoides/química , Teoría Funcional de la DensidadRESUMEN
Catalytic nanoparticles (CNPs) as heterogeneous catalyst reveals superior activity due to their physio-chemical features, such as high surface-to-volume ratio and unique optical, electric, and magnetic properties. The CNPs, based on their physio-chemical nature, can either increase the reactive oxygen species (ROS) level for tumor and antibacterial therapy or eliminate the ROS for cytoprotection, anti-inflammation, and anti-aging. In addition, the catalytic activity of nanozymes can specifically trigger a specific reaction accompanied by the optical feature change, presenting the feasibility of biosensor and bioimaging applications. Undoubtedly, CNPs play a pivotal role in pushing the evolution of technologies in medical and clinical fields, and advanced strategies and nanomaterials rely on the input of chemical experts to develop. Herein, a systematic and comprehensive review of the challenges and recent development of CNPs for biomedical applications is presented from the viewpoint of advanced nanomaterial with unique catalytic activity and additional functions. Furthermore, the biosafety issue of applying biodegradable and non-biodegradable nanozymes and future perspectives are critically discussed to guide a promising direction in developing span-new nanozymes and more intelligent strategies for overcoming the current clinical limitations.
Asunto(s)
Nanopartículas , Humanos , Catálisis , Nanopartículas/química , Animales , Especies Reactivas de Oxígeno/metabolismo , Técnicas Biosensibles/métodosRESUMEN
Chemodynamic therapy (CDT) uses the Fenton or Fenton-like reaction to yield toxic â§OH following H2O2 â â§OH for tumoral therapy. Unfortunately, H2O2 is often taken from the limited endogenous supply of H2O2 in cancer cells. A water oxidation CoFe Prussian blue (CFPB) nanoframes is presented to provide sustained, external energy-free self-supply of â§OH from H2O to process CDT and/or photothermal therapy (PTT). Unexpectedly, the as-prepared CFPB nanocubes with no near-infrared (NIR) absorption is transformed into CFPB nanoframes with NIR absorption due to the increased Fe3+-N ≡ C-Fe2+ composition through the proposed proton-induced metal replacement reactions. Surprisingly, both the CFPB nanocubes and nanoframes provide for the self-supply of O2, H2O2, and â§OH from H2O, with the nanoframe outperforming in the production of â§OH. Simulation analysis indicates separated active sites in catalyzation of water oxidation, oxygen reduction, and Fenton-like reactions from CFPB. The liposome-covered CFPB nanoframes prepared for controllable water-driven CDT for male tumoral mice treatments.
Asunto(s)
Nanopartículas , Neoplasias , Masculino , Animales , Ratones , Dominio Catalítico , Peróxido de Hidrógeno , Catálisis , Agua , Línea Celular TumoralRESUMEN
Dynamic therapies have potential in cancer treatments but have limitations in efficiency and penetration depth. Here a membrane-integrated liposome (MIL) is created to coat titanium dioxide (TiO2) nanoparticles to enhance electron transfer and increase radical production under low-dose X-ray irradiation. The exoelectrogenic Shewanella oneidensis MR-1 microorganism presents an innate capability for extracellular electron transfer (EET). An EET-mimicking photocatalytic system is created by coating the TiO2 nanoparticles with the MIL, which significantly enhances superoxide anions generation under low-dose (1 Gy) X-ray activation. The c-type cytochromes-constructed electron channel in the membrane mimics electron transfer to surrounding oxygen. Moreover, the hole transport in the valence band is also observed for water oxidation to produce hydroxyl radicals. The TiO2@MIL system is demonstrated against orthotopic liver tumours in vivo.
Asunto(s)
Liposomas , Shewanella , Electrones , Fusión de Membrana , Transporte de Electrón , Oxidación-ReducciónRESUMEN
Herein, we employ a galvanic replacement approach to create atomically dispersed Au on degradable zero-valent Cu nanocubes for tumor treatments on female mice. Controlling the addition of precursor HAuCl4 allows for the fabrication of different atomic ratios of AuxCuy. X-ray absorption near edge spectra indicates that Au and Cu are the predominant oxidation states of zero valence. This suggests that the charges of Au and Cu remain unchanged after galvanic replacement. Specifically, Au0.02Cu0.98 composition reveals the enhanced â¢OH generation following O2 â H2O2 â â¢OH. The degradable Au0.02Cu0.98 released Cu+ and Cu2+ resulting in oxygen reduction and Fenton-like reactions. Simulation studies indicate that Au single atoms boot zero-valent copper to reveal the catalytic capability of Au0.02Cu0.98 for O2 â H2O2 â â¢OH as well. Instead of using endogenous H2O2, H2O2 can be sourced from the O2 in the air through the use of nanocubes. Notably, the Au0.02Cu0.98 structure is degradable and renal-clearable.
Asunto(s)
Cobre , Oxígeno , Femenino , Ratones , Animales , Cobre/química , Oxígeno/química , Peróxido de Hidrógeno/química , Oxidación-Reducción , OroRESUMEN
Photodynamic therapy (PDT) is traditionally ineffective for deeply embedded tumors due to the poor penetration depth of the excitation light. Chemiluminescence resonance energy transfer (CRET) has emerged as a promising mode of PDT without external light. To date, related research has frequently used endogenous hydrogen peroxide (H2 O2 ) and oxygen (O2 ) inside the solid tumor microenvironment to trigger CRET-mediated PDT. Unfortunately, this significantly restricts treatment efficacy and the development of further biomedical applications because of the limited amounts of endogenous H2 O2 and O2 . Herein, a nanohybrid (mSiO2 /CaO2 /CPPO/Ce6: mSCCC) nanoparticle (NP) is designed to achieve synergistic CRET-mediated PDT and calcium (Ca2+ )-overload-mediated therapy. The calcium peroxide (CaO2 ) formed inside mesoporous SiO2 (mSC) with the inclusion of the chemiluminescent agent (CPPO) and photosensitizer (Ce6) self-supplies H2 O2 , O2 , and Ca2+ allowing for the subsequent treatments. The Ce6 in mSCCC NPs is excited by chemical energy in situ following the supply of H2 O2 and O2 to produce singlet oxygen (1 O2 ). The nanohybrid NPs are coated with stearic acid to avoid decomposition during blood circulation through contact with aqueous environment. This nanohybrid shows promising performance in the generation of 1 O2 for external light-free PDT and the release of Ca2+ ions for Ca2+ -overloaded therapy against orthotopic hepatocellular carcinoma.
Asunto(s)
Neoplasias Hepáticas , Nanopartículas , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Calcio , Oxígeno Singlete , Dióxido de Silicio/química , Peróxido de Hidrógeno , Línea Celular Tumoral , Nanopartículas/química , Oxígeno , Neoplasias Hepáticas/tratamiento farmacológico , Nanotecnología , Microambiente TumoralRESUMEN
Lung cancer is considered among the deadliest cancers with a poor prognosis. Au@PG nanoparticles (NPs) are gold (Au)-based NPs featuring a polyaniline-based glyco structure (PG) generated from the polymerization of ortho-nitrophenyl-ß-d-galactopyranoside (ONPG) with promising M1 macrophage polarization activity, resulting in tumor remodeling and from a cold to a hot microenvironment, which promotes the cytotoxic T cell response and tumor inhibition. The combination of Au@PG NPs and anti-programmed cell death protein 1 (PD-1) therapy improved tumor inhibition and immunosuppression, accompanied by the secretion of immunogenic cytokines. A one-pot synthetic method was developed to achieve glyco-condensation during the formation of Au@PG NPs, which induced macrophage polarization more efficiently than Au@glucose, Au@mannose, and Au@galactose NPs. The switch from M2 to M1 macrophages was dependent on NP size, with smaller Au@PG NPs performing better than larger ones, with effectiveness ranked as follows: 32.2 nm ≈ 29.8 nm < 26.4 nm < 18.3 nm. Cellular uptake by endocytosis induced size-dependent endoplasmic reticulum (ER) stress, which resulted in the activation of spleen tyrosine kinase (SYK), leading to immune modulations and macrophage polarization. Our results suggested the promising potential of Au@PG NPs in lung cancer immunotherapy.
Asunto(s)
Neoplasias Pulmonares , Nanopartículas del Metal , Nanopartículas , Compuestos de Anilina , Oro/química , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Nanopartículas/química , Microambiente TumoralRESUMEN
Ineffective site-specific delivery has seriously impeded the efficacy of nanoparticle-based drugs to a disease site. Here, we report the preparation of three different shapes (sphere, scroll, and oblate) to systematically evaluate the impact of the marginative delivery on the efficacy of magnetic resonance (MR) imaging-guided X-ray irradiation at a low dose of 1 Gy. In addition to the shape effect, the therapeutic efficacy is investigated for the first time to be strongly related to the structure effect that is associated with the chemical activity. The enhanced particle-vessel wall interaction of both the flat scroll and oblate following margination dynamics leads to greater accumulation in the lungs, resulting in superior performance over the sphere against lung tumor growth and suppression of lung metastasis. Furthermore, the impact of the structural discrepancy in nanoparticles on therapeutic efficacy is considered. The tetragonal oblate reveals that the feasibility of the charge-transfer process outperforms the orthorhombic scroll and cubic sphere to suppress tumors. Finally, surface area is also a crucial factor affecting the efficacy of X-ray treatments from the as-prepared particles.
Asunto(s)
Neoplasias Pulmonares , Nanopartículas , Terapia por Rayos X , Humanos , Pulmón , Neoplasias Pulmonares/diagnóstico por imagen , Imagen por Resonancia Magnética , Nanopartículas/química , Nanopartículas/uso terapéuticoRESUMEN
Pancreatic cancer is among the leading causes of cancer-related death and remains a formidable therapeutic challenge. To date, surgical resection and chemotherapy have been the standards of care. Methotrexate (MTX), which is recognized as a refractory drug for pancreatic cells, was conjugated to the surface of LiYF4:Ce3+ nanoparticles (NP-MTX) through a photocleavable linker molecule. When LiYF4:Ce3+ NPs are stimulated by X-rays, they emit light, which induces the photocleavage of the photolabile linker molecule to release MTX. MTX can target pancreatic tumors, which overexpress folic acid (FA) receptors and are internalized into the cell through receptor-mediated endocytosis. The synergistic effect of the NP-MTX treatment initiated by X-ray irradiation occurs due to the combination of nanoparticle sensitization and the radiosensitizing chemotherapy of the photocleaved MTX molecule. This dual sensitization effect mediated by NP-MTX enabled 40% dose enhancement, which corresponded with an increase in the generation of cytotoxic cellular reactive oxygen species (ROS) and enhanced S phase arrest within the cell cycle. The delivery of an ultralow radiation dose of 0.1 Gy resulted in the photocleavage of MTX from NP-MTX, and this strategy demonstrated in vivo efficacy against AsPC-1 and PANC-1 xenografted pancreatic tumors.
Asunto(s)
Nanopartículas , Neoplasias Pancreáticas , Puntos de Control del Ciclo Celular , Sistemas de Liberación de Medicamentos , Humanos , Metotrexato , Neoplasias Pancreáticas/tratamiento farmacológico , Rayos XRESUMEN
Bacteriophages are viruses that infect bacteria, replicating and multiplying using host resources. For specific infections, bacteriophages have developed extraordinary proteins for recognizing and degrading their host. Inspired by the remarkable development of viral proteins, we used the tail fiber protein to treat multiple drug-resistant Acinetobacter baumannii. The tail fiber protein exhibits polysaccharide depolymerases activity which specifically degrades exopolysaccharide (EPS) during the phage-host interaction. However, EPS-degraded cells are observed altering host susceptibility to bacterial lysis peptide, the endolysin-derived peptide. Notably, endolysin is necessary in the process of progeny liberation by breaking the bacterial cell wall. Surprisingly, peeling the EPS animated host to resist colistin, the last-resort antibiotic used in multidrug-resistant Gram-negative bacteria infection. Tail fiber-modified cell wall reduces colistin attachment, causing temporary antibiotic-resistance and possibly raising clinical risks in treating multiple drug-resistant A. baumannii.
RESUMEN
The second near-infrared biological window b (NIR-IIb, 1500-1700 nm) is recently considered as the promising region for deeper tissue penetration. Herein, a nanocarrier for 1550 nm light-responsive dual-photodynamic therapy (PDT) is developed to efficiently boost singlet oxygen (1O2) generation. The dual-photosensitizers (PSs), rose bengal (RB) and chlorin e6 (Ce6), are carried by the silica-coated core-shell LiYbF4:Er@LiGdF4 upconversion nanoparticles (UCNPs), forming UCNP/RB,Ce6. Following 1550 nm laser irradiation, the upconversion emission of UCNP/RB,Ce6 in both green (â¼550 nm) and red (â¼670 nm) colors is fully utilized to activate RB and Ce6, respectively. The simultaneous triggering of dual-PS generates an abundant amount of 1O2 resulting in boosted PDT efficacy. This dual-PDT nanocarrier presents an enhanced anticancer effect under single dose treatment in comparison with the single-PS ones from in vitro and in vivo treatments. The marriage between the boosted dual-PDT and 1550 nm light excitation is anticipated to provide a new avenue for non-invasive therapy.
Asunto(s)
Antineoplásicos/farmacología , Nanopartículas/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Fotoquimioterapia , Fármacos Fotosensibilizantes/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Rayos Infrarrojos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Estructura Molecular , Nanopartículas/química , Neoplasias Experimentales/tratamiento farmacológico , Neoplasias Experimentales/patología , Imagen Óptica , Neoplasias Pancreáticas/patología , Tamaño de la Partícula , Fármacos Fotosensibilizantes/síntesis química , Fármacos Fotosensibilizantes/química , Propiedades de Superficie , Células Tumorales CultivadasRESUMEN
Mushrooms are rich in ergosterol, a precursor of ergocalciferol, which is a type of vitamin D2. The conversion of ergosterol to ergocalciferol takes place in the presence of UV radiation by the cleavage of the "B-ring" in the ergosterol. As the UV radiation cannot penetrate deep into the tissue, only minimal increase occurs in sunlight. In this study, upconversion nanoparticles with the property to convert deep-penetrating near-infrared radiation to UV radiation have been cast into a disk to use sunlight and emit UV radiation for vitamin D conversion. An engineered upconversion nanoparticle (UCNP) disk with maximum particles and limited clusters demonstrates â¼2.5 times enhanced vitamin D2 conversion.
Asunto(s)
Luz Solar , Rayos Ultravioleta , Ergosterol , Rayos Ultravioleta/efectos adversos , Vitamina D , VitaminasRESUMEN
While nitric oxide (NO) can remedy vasoconstriction, inhalation of NO may cause systematic toxicity. We report a goldsome, which comprises a hollowed poly(lactic-co-glycolic acid) (PLGA) polymersome with S-nitrosoglutathione (GSNO, a NO donor) molecules and gold nanoparticles (Au NPs) incorporated in its hydrophilic core and hydrophobic membrane, respectively. Photothermal heating caused breakdown of polymersomes and enabled NO generation through reaction between GSNO and Au NPs. Photo-illumination at the zebrafish head led to local NO generation and selective cerebral vasodilation while it had little effects in regions away from the illumination site, and effectively mitigated hypoxia induced cerebral vasoconstriction. We demonstrate a translational potential by showing photo-stimulated NO generation with a clinical intravascular optical catheter. In conclusion, the goldsome, which enables light stimulated local NO generation and can be delivered with clinical intravascular optical catheters, should extend applications of NO therapies while surmounting limitations associated with systemic administration.
Asunto(s)
Oro/química , Luz , Nanopartículas del Metal/química , Óxido Nítrico/biosíntesis , Vasoconstricción/efectos de los fármacos , Animales , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas del Metal/toxicidad , Donantes de Óxido Nítrico/química , Donantes de Óxido Nítrico/farmacología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , S-Nitrosoglutatión/química , Pez Cebra/embriologíaRESUMEN
Matchstick-like Ag2S-ZnS nanorods (NRs) with a tunable aspect ratio (AR) were synthesized using one-pot thermal decomposition. The ultraviolet photoelectron spectra and time-resolved photoluminescence spectra of the Ag2S-ZnS NRs were collected to study their electronic band structures and charge carrier dynamics. The energy difference (ΔE) at the interface between the ZnS stem and Ag2S tip was altered as the AR of Ag2S-ZnS NRs increased from 11.9 to 18.4, resulting in an enlarged driving force for the delocalized electrons along the conduction band of ZnS being injected into that of Ag2S. The interfacial electron transfer rate constant (ket) from ZnS to Ag2S could be enhanced by â¼2 orders of magnitude from 5.27 × 106 to 3.24 × 108 s-1, leading to a significant improvement in the efficiency of solar hydrogen generation. This investigation provides new physical insights into the manipulation of charge carrier dynamics by means of AR adjustment in semiconductor nanoheterostructures for photoelectric conversions.
RESUMEN
Chromium-doped zinc gallate, ZnGa2 O4 :Cr3+ (ZGC), is viewed as a long-lasting luminescence (LLL) phosphor that can avoid tissue autofluorescence interference for in vivo imaging detection. ZGC is a cubic spinel structure, a typical agglomerative or clustered morphology lacking a defined cubic shape, but a sphere-like feature is commonly obtained for the nanometric ZGC. The substantial challenge remains achieving a well-defined cubic feature in nanoscale. The process by which dispersed and well-defined concave cubic ZGC is obtained is described, exhibiting much stronger LLL in UV and X-ray excitation for the dispersed cubic ZGC compared with the agglomerative form that cannot be excited using X-rays with a low dose of 0.5 Gy. The cubic ZGC reveals a specific accumulation in liver and 0.5 Gy used at the end of X-ray excitation is sufficient for imaging of deep-seated hepatic tumors. The ZGC nanocubes show highly passive targeting of orthotopic hepatic tumors.
Asunto(s)
Cromo/análisis , Neoplasias Hepáticas/diagnóstico por imagen , Sustancias Luminiscentes/análisis , Nanopartículas/análisis , Zinc/análisis , Animales , Células Hep G2 , Humanos , Luminiscencia , Mediciones Luminiscentes/métodos , Masculino , Ratones , Ratones Endogámicos C57BL , Imagen Óptica/métodos , Rayos XRESUMEN
A deficiency of nitric oxide (NO) supply has been found to impair wound healing. The exogenous topical delivery of NO is a promising approach to enhance vasodilation and stimulate angiogenesis and collagen deposition. In this study, the CN groups on the surface of Prussian blue (PB) nanocubes were carefully reduced to -CH2-NH2 to conjugate with COOH group of hemin consisting of a Fe-porphyrin structure with strong affinity toward NO. Accordingly, the NO gas was able to coordinate to hemin-modified PB nanocubes. The hemin-modified PB carrying NO (PB-NO) can be responsible to near-infrared (NIR) light (808 nm) exposure to induce the thermo-induced liberation of NO based on the light-to-heat transformation property of PB nanocubes. The NO supply on the incisional wound sites can be readily topically dropped the colloidal solution of PB-NO for receiving NIR light irradiation. The enhanced blood flow was in a controllable manner whenever the wound sites containing PB-NO received NIR light irradiation. The promotion of blood perfusion following the on-demand multidelivery of NO has effectively facilitated the process of wound closure to enhance angiogensis and collagen deposition.
Asunto(s)
Coloides/química , Hemina/química , Nanopartículas/química , Neovascularización Fisiológica/efectos de los fármacos , Donantes de Óxido Nítrico/administración & dosificación , Cicatrización de Heridas/efectos de los fármacos , Animales , Línea Celular , Colágeno/metabolismo , Preparaciones de Acción Retardada/química , Femenino , Ferrocianuros/química , Humanos , Luz , Ratones Endogámicos C57BL , Microcirculación/efectos de los fármacos , Óxido Nítrico/administración & dosificación , Óxido Nítrico/farmacología , Donantes de Óxido Nítrico/farmacologíaRESUMEN
Peripheral Arterial Occlusive Disease (PAOD) is an aging disease that affects the quality of life of many people by its intermittent claudication and critical limb ischemia presentations. Traditional treatment and management of PAOD are asking patients to make a life change and medication with antiplatelet, statins and cilostazol, which decrease the possibility of clot formation. Our strategy has employed a magnetic Fe3O4-PLGA polymersome to carry the cilostazol into the ischemic area by magnetic attraction following remote-control drug release through low-energy ultrasound exposure. In the animal studies, the cilostazol-loaded Fe3O4-PLGA polymersomes were injected and accumulated at ischemic leg through magnetic attraction. Then, using a clinical-use ultrasound machine the leg was irradiated to forward cilostazol release from the accumulated polymersomes. Dramatically, we found an observable result of bloody flux recovery in the leg after 7â¯days compared to the non-treated leg that showed no evidence of the blood recovery.
Asunto(s)
Arteriopatías Oclusivas/tratamiento farmacológico , Cilostazol/administración & dosificación , Liberación de Fármacos , Miembro Posterior/irrigación sanguínea , Isquemia/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Enfermedad Arterial Periférica/tratamiento farmacológico , Polímeros/administración & dosificación , Ultrasonografía , Inductores de la Angiogénesis/administración & dosificación , Inductores de la Angiogénesis/química , Animales , Arteriopatías Oclusivas/patología , Broncodilatadores/administración & dosificación , Compuestos Férricos/química , Isquemia/patología , Ratones , Ratones Endogámicos C57BL , Neovascularización Patológica/patología , Enfermedad Arterial Periférica/patología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Polímeros/químicaRESUMEN
Construction of multifunctional nanoparticles (NPs) with near-infrared (NIR) plasmonic responses is considered a versatile and multifaceted platform for several biomedical applications. Herein, a double layer of Au/Ag alloy on the surface of truncated octahedral iron oxide NPs (IONPs) was prepared and the distance between the layers was controlled to exhibit broad and strong NIR absorption. The rattle-shaped IONP@shell-in-shell nanostructure showed light-response to the NIR biological window from 650 to 1300 nm for photothermal therapy (PTT) and magnetic guidance for hyperthermia and magnetic resonance imaging (MRI) diagnosis. Exposing the aqueous solution of IONP@shell-in-shell to a 1064 nm diode laser, its heat conversion efficiency was â¼28.3%. The in vitro cell viability at a gold concentration of 100 ppm was â¼85%, and decreased to â¼16% when the cells were treated with the NIR irradiation and magnetic attraction. T2-weighted MRI images showed a clear accumulation of IONP@shell-in-shell at the tumor site with magnetic attraction. In vivo luminescence tumor images explained that the IONP@shell-in-shell could reduce the U87MG-luc2 cancer cell proliferation in mice with the NIR irradiation and magnetic attraction. These results indicate the IONP@shell-in-shell as a promising nanomedicine for PTT, magnetic targeting, and magnetic resonance imaging (MRI).