RESUMEN
BACKGROUND: Imbalances between hospital caseload and care resources that strained U.S. hospitals during the pandemic have persisted after the pandemic amid ongoing staff shortages. Understanding which hospital types were more resilient to pandemic overcrowding-related excess deaths may prioritize patient safety during future crises. OBJECTIVE: To determine whether hospital type classified by capabilities and resources (that is, extracorporeal membrane oxygenation [ECMO] capability, multiplicity of intensive care unit [ICU] types, and large or small hospital) influenced COVID-19 volume-outcome relationships during Delta wave surges. DESIGN: Retrospective cohort study. SETTING: 620 U.S. hospitals in the PINC AI Healthcare Database. PARTICIPANTS: Adult inpatients with COVID-19 admitted July to November 2021. MEASUREMENTS: Hospital-months were ranked by previously validated surge index (severity-weighted COVID-19 inpatient caseload relative to hospital bed capacity) percentiles. Hierarchical models were used to evaluate the effect of log-transformed surge index on the marginally adjusted probability of in-hospital mortality or discharge to hospice. Effect modification was assessed for by 4 mutually exclusive hospital types. RESULTS: Among 620 hospitals recording 223 380 inpatients with COVID-19 during the Delta wave, there were 208 ECMO-capable, 216 multi-ICU, 36 large (≥200 beds) single-ICU, and 160 small (<200 beds) single-ICU hospitals. Overall, 50 752 (23%) patients required admission to the ICU, and 34 274 (15.3%) died. The marginally adjusted probability for mortality was 5.51% (95% CI, 4.53% to 6.50%) per unit increase in the log surge index (strain attributable mortality = 7375 [CI, 5936 to 8813] or 1 in 5 COVID-19 deaths). The test for interaction showed no difference (P = 0.32) in log surge index-mortality relationship across 4 hospital types. Results were consistent after excluding transferred patients, restricting to patients with acute respiratory failure and mechanical ventilation, and using alternative strain metrics. LIMITATION: Residual confounding. CONCLUSION: Comparably detrimental relationships between COVID-19 caseload and survival were seen across all hospital types, including highly advanced centers, and well beyond the pandemic's learning curve. These lessons from the pandemic heighten the need to minimize caseload surges and their effects across all hospital types during public health and staffing crises. PRIMARY FUNDING SOURCE: Intramural Research Program of the National Institutes of Health Clinical Center.
Asunto(s)
COVID-19 , Mortalidad Hospitalaria , Unidades de Cuidados Intensivos , SARS-CoV-2 , Humanos , COVID-19/epidemiología , COVID-19/mortalidad , Estudios Retrospectivos , Masculino , Estados Unidos/epidemiología , Femenino , Persona de Mediana Edad , Unidades de Cuidados Intensivos/estadística & datos numéricos , Oxigenación por Membrana Extracorpórea/estadística & datos numéricos , Hospitales/estadística & datos numéricos , Pandemias , Anciano , Carga de Trabajo , Adulto , Capacidad de Camas en Hospitales/estadística & datos numéricosRESUMEN
BACKGROUND: Seroprevalence studies are the standard for disease surveillance, and serology determined eligibility for the first dengue vaccine. Expanding flavivirus co-circulation and vaccination complicate testing. We evaluate the accuracy of a common dengue virus serological assay, examine immunity to non-dengue flaviviruses as a contributor to decreased performance, and assess whether alternative cut points may improve assay performance. METHODS: Children (n = 770) aged 2-9 years in Kampong Speu, Cambodia were enrolled in a prospective longitudinal study, and PanBio indirect dengue virus immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) was performed. Plaque reduction neutralization tests (PRNTs) using dengue viruses were performed on a subset to assess the accuracy of the IgG ELISA, and PRNTs with Zika, Japanese encephalitis, and West Nile viruses evaluated immunity to non-dengue flaviviruses. Receiver operating curve analysis identified an alternative cut point to improve IgG ELISA accuracy. RESULTS: The dengue IgG ELISA had a lower specificity than previously reported (58% vs 93%-100%). Of those with false-positive IgG results, 46% had detectable neutralizing antibodies against other flaviviruses including 14% against West Nile virus. A higher IgG cut point improved the test accuracy in this population. CONCLUSIONS: Physicians and public health authorities should be alert for West Nile in Cambodia. Immunity to non-dengue flaviviruses can impact dengue surveillance. CLINICAL TRIALS REGISTRATION: NCT03534245.
RESUMEN
BACKGROUND: Antimicrobial resistance (AMR) surveillance in low- and middle-income countries (LMICs) often relies on poorly resourced laboratory processes. Centralized sequencing was combined with cloud-based, open-source bioinformatics solutions for national AMR surveillance in Cambodia. METHODS: Blood cultures growing gram-negative bacteria were collected at six Cambodian hospitals (January 2021 - October 2022). Isolates were obtained from pure plate growth and shotgun DNA sequencing performed in-country. Using public nucleotide and protein databases, reads were aligned for pathogen identification and AMR gene characterization. Multilocus sequence typing was performed on whole genome assemblies and haplotype clusters compared against published genomes. FINDINGS: Genes associated with acquired resistance to fluoroquinolones were identified in 59%, TMP/SMX in 45%, and aminoglycosides in 52% of 715 isolates. Extended-spectrum beta-lactamase encoding genes were identified in 34% isolates, most commonly blaCTX-M-15, blaCTX-M-27, and blaCTX-M-55 in E. coli sequence types 131 and 1193. Carbapenemase genes were identified in 12% isolates, most commonly blaOXA-23, blaNDM-1, blaOXA-58 and blaOXA-66 in Acinetobacter species. Phylogenetic analysis revealed clonal strains of A. baumannii, representing suspected nosocomial outbreaks, and genetic clusters of quinolone-resistant typhoidal Salmonella and ESBL E. coli cases suggesting community transmission. INTERPRETATION: With accessible sequencing platforms and bioinformatics solutions, bacterial genomics can supplement AMR surveillance in LMICs. FUNDING: Research was supported by the National Institute of Allergy and Infectious Diseases and the Bill and Melinda Gates Foundation [OPP1211806].
RESUMEN
The incidence of dengue virus disease has increased globally across the past half-century, with highest number of cases ever reported in 2019 and again in 2023. We analyzed climatological, epidemiological, and phylogenomic data to investigate drivers of two decades of dengue in Cambodia, an understudied endemic setting. Using epidemiological models fit to a 19-y dataset, we first demonstrate that climate-driven transmission alone is insufficient to explain three epidemics across the time series. We then use wavelet decomposition to highlight enhanced annual and multiannual synchronicity in dengue cycles between provinces in epidemic years, suggesting a role for climate in homogenizing dynamics across space and time. Assuming reported cases correspond to symptomatic secondary infections, we next use an age-structured catalytic model to estimate a declining force of infection for dengue through time, which elevates the mean age of reported cases in Cambodia. Reported cases in >70-y-old individuals in the 2019 epidemic are best explained when also allowing for waning multitypic immunity and repeat symptomatic infections in older patients. We support this work with phylogenetic analysis of 192 dengue virus (DENV) genomes that we sequenced between 2019 and 2022, which document emergence of DENV-2 Cosmopolitan Genotype-II into Cambodia. This lineage demonstrates phylogenetic homogeneity across wide geographic areas, consistent with invasion behavior and in contrast to high phylogenetic diversity exhibited by endemic DENV-1. Finally, we simulate an age-structured, mechanistic model of dengue dynamics to demonstrate how expansion of an antigenically distinct lineage that evades preexisting multitypic immunity effectively reproduces the older-age infections witnessed in our data.
Asunto(s)
Virus del Dengue , Dengue , Filogenia , Cambodia/epidemiología , Dengue/epidemiología , Dengue/virología , Dengue/inmunología , Dengue/transmisión , Humanos , Virus del Dengue/genética , Virus del Dengue/inmunología , Clima , Incidencia , DemografíaRESUMEN
Importance: Little is known about the degree to which suspected sepsis drives broad-spectrum antibiotic use in hospitals, what proportion of antibiotic courses are unnecessarily broad in retrospect, and whether these patterns are changing over time. Objective: To describe trends in empiric broad-spectrum antibiotic use for suspected community-onset sepsis. Design, Setting, and Participants: This cross-sectional study used clinical data from adults admitted to 241 US hospitals in the PINC AI Healthcare Database. Eligible participants were aged 18 years or more and were admitted between 2017 and 2021 with suspected community-onset sepsis, defined by a blood culture draw, lactate measurement, and intravenous antibiotic administration on admission. Exposures: Empiric anti-methicillin-resistant Staphylococcus aureus (MRSA) and/or antipseudomonal ß-lactam agent use. Main Outcomes and Measures: Annual rates of empiric anti-MRSA and/or antipseudomonal ß-lactam agent use and the proportion that were likely unnecessary in retrospect based on the absence of ß-lactam resistant gram-positive or ceftriaxone-resistant gram-negative pathogens from clinical cultures obtained through hospital day 4. Annual trends were calculated using mixed-effects logistic regression models, adjusting for patient and hospital characteristics. Results: Among 6â¯272â¯538 hospitalizations (median [IQR] age, 66 [53-78] years; 443â¯465 male [49.6%]; 106â¯095 Black [11.9%], 65â¯763 Hispanic [7.4%], 653â¯907 White [73.1%]), 894â¯724 (14.3%) had suspected community-onset sepsis, of whom 582â¯585 (65.1%) received either empiric anti-MRSA (379â¯987 [42.5%]) or antipseudomonal ß-lactam therapy (513â¯811 [57.4%]); 311â¯213 (34.8%) received both. Patients with suspected community-onset sepsis accounted for 1â¯573â¯673 of 3â¯141â¯300 (50.1%) of total inpatient anti-MRSA antibiotic days and 2â¯569â¯518 of 5â¯211â¯745 (49.3%) of total antipseudomonal ß-lactam days. Between 2017 and 2021, the proportion of patients with suspected sepsis administered anti-MRSA or antipseudomonal therapy increased from 63.0% (82â¯731 of 131â¯275 patients) to 66.7% (101â¯003 of 151â¯435 patients) (adjusted OR [aOR] per year, 1.03; 95% CI, 1.03-1.04). However, resistant organisms were isolated in only 65â¯434 cases (7.3%) (30â¯617 gram-positive [3.4%], 38â¯844 gram-negative [4.3%]) and the proportion of patients who had any resistant organism decreased from 9.6% to 7.3% (aOR per year, 0.87; 95% CI, 0.87-0.88). Most patients with suspected sepsis treated with empiric anti-MRSA and/or antipseudomonal therapy had no resistant organisms (527â¯356 of 582â¯585 patients [90.5%]); this proportion increased from 88.0% in 2017 to 91.6% in 2021 (aOR per year, 1.12; 95% CI, 1.11-1.13). Conclusions and Relevance: In this cross-sectional study of adults admitted to 241 US hospitals, empiric broad-spectrum antibiotic use for suspected community-onset sepsis accounted for half of all anti-MRSA or antipseudomonal therapy; the use of these types of antibiotics increased between 2017 and 2021 despite resistant organisms being isolated in less than 10% of patients treated with broad-spectrum agents.
Asunto(s)
Antibacterianos , Infecciones Comunitarias Adquiridas , Sepsis , Humanos , Antibacterianos/uso terapéutico , Estudios Transversales , Sepsis/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Infecciones Comunitarias Adquiridas/tratamiento farmacológico , Estados Unidos/epidemiología , Anciano , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Adulto , Hospitales/estadística & datos numéricosRESUMEN
In resource-scarce settings, melioidosis is associated with up to 80% mortality. Studies of melioidosis in Cambodia report primarily on pediatric populations with localized infection; however, literature describing Cambodian adults with severe melioidosis is lacking. We present a case series of 35 adults with sequence-confirmed Burkholderia pseudomallei bacteremia presenting to a provincial referral hospital in rural Cambodia. More than 90% of the patients had diabetes, an important risk factor for developing melioidosis. Inappropriate antimicrobial therapy was significantly associated with lower odds of survival. Improved diagnostic testing and greater access to first-line antibiotics for acute melioidosis treatment present potential targets for intervention to reduce mortality associated with this disease in resource-limited settings.
Asunto(s)
Antibacterianos , Bacteriemia , Burkholderia pseudomallei , Melioidosis , Humanos , Melioidosis/tratamiento farmacológico , Melioidosis/mortalidad , Melioidosis/epidemiología , Melioidosis/microbiología , Burkholderia pseudomallei/aislamiento & purificación , Burkholderia pseudomallei/efectos de los fármacos , Cambodia/epidemiología , Factores de Riesgo , Masculino , Femenino , Estudios Retrospectivos , Adulto , Bacteriemia/mortalidad , Bacteriemia/tratamiento farmacológico , Bacteriemia/microbiología , Persona de Mediana Edad , Antibacterianos/uso terapéutico , Anciano , Adulto JovenRESUMEN
Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of human cohorts for exposure to potentially infectious mosquitoes. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naive at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify immunogenic Aedes aegypti salivary proteins and measure total anti-Ae. aegypti IgG. Results: We found a correlation (rs=0.86) between IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic versus symptomatic dengue. Discussion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.
Asunto(s)
Aedes , Dengue , Proteínas de Insectos , Mosquitos Vectores , Proteínas y Péptidos Salivales , Humanos , Aedes/inmunología , Aedes/virología , Animales , Proteínas y Péptidos Salivales/inmunología , Niño , Mosquitos Vectores/inmunología , Mosquitos Vectores/virología , Dengue/inmunología , Dengue/transmisión , Proteínas de Insectos/inmunología , Femenino , Preescolar , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangre , Masculino , Cambodia , Estudios Longitudinales , Virus del Dengue/inmunología , Adolescente , Mordeduras y Picaduras de Insectos/inmunologíaRESUMEN
BACKGROUND: Disparate and rapidly changing practice recommendations from major professional infectious diseases societies for managing non-severe infections caused by extended-spectrum ß-lactamase-producing Enterobacterales might hamper carbapenem stewardship. We aimed to understand the real-world management of extended-spectrum cephalosporin-resistant (ECR) Enterobacterales infections in US hospitals and factors influencing preference for carbapenems over alternative treatments. METHODS: This retrospective cohort study included adults (aged ≥18 years) admitted to hospital with ECR Enterobacterales infections in the PINC AI database. Antibiotic regimens were assessed during empirical and targeted treatment periods and by infection severity and site. Likelihood of receiving targeted carbapenems over time and before or after initial release of the Infectious Diseases Society of America (IDSA) guidance on Sept 8, 2020, was established with generalised estimating equations controlling for patient, hospital, and temporal confounders. FINDINGS: Between Jan 1, 2018, and Dec 31, 2021, 30â041 inpatient encounters with ECR Enterobacterales infections were identified at 168 US hospitals, of which 16â006 (53·3%) encounters were in women and 14â035 (46·7%) were in men, with a mean age of 67·3 years (SD 15·1). Although few patients received carbapenems empirically (5324 [17·7%] of 30â041), many did so as targeted treatment (17â518 [58·3%] of 30â041), including subgroups of patients without septic shock (3031 [45·6%] of 6651) and patients with urinary tract infections without septic shock (1845 [46·8%] of 3943) in whom specific narrower-spectrum alternatives were active. Transitions from non-carbapenem to carbapenem antibiotics occurred most often on the day that the ECR phenotype was reported, regardless of illness severity. Carbapenems were the predominant choice to treat ECR Enterobacterales infections over time (adjusted odds ratio 1·00 [95% CI 1·00-1·00]), with no additional immediate change (1·07 [0·95-1·20]) or sustained change (0·99 [0·98-1·00]) after IDSA guidance release. INTERPRETATION: High carbapenem use in targeting non-severe ECR Enterobacterales infections in US hospitals predates 2020 IDSA guidance and has persisted thereafter. Efforts to increase awareness and implementation of recommendations among clinicians to use carbapenem-sparing alternatives in ECR Enterobacterales infections might decrease global carbapenem selective pressure. FUNDING: US National Institutes of Health Intramural Research Program, National Institute of Allergy and Infectious Diseases, and US Food and Drug Administration.
Asunto(s)
Antibacterianos , Carbapenémicos , Infecciones por Enterobacteriaceae , Humanos , Estudios Retrospectivos , Carbapenémicos/uso terapéutico , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Masculino , Femenino , Persona de Mediana Edad , Estados Unidos , Antibacterianos/uso terapéutico , Anciano , Adulto , Hospitales , Cefalosporinas/uso terapéutico , Enterobacteriaceae/efectos de los fármacos , Programas de Optimización del Uso de los Antimicrobianos , Resistencia a las Cefalosporinas , Guías de Práctica Clínica como AsuntoRESUMEN
BACKGROUND: The U.S. antibiotic market failure has threatened future innovation and supply. Understanding when and why clinicians underutilize recently approved gram-negative antibiotics might help prioritize the patient in future antibiotic development and potential market entry rewards. OBJECTIVE: To determine use patterns of recently U.S. Food and Drug Administration (FDA)-approved gram-negative antibiotics (ceftazidime-avibactam, ceftolozane-tazobactam, meropenem-vaborbactam, plazomicin, eravacycline, imipenem-relebactam-cilastatin, and cefiderocol) and identify factors associated with their preferential use (over traditional generic agents) in patients with gram-negative infections due to pathogens displaying difficult-to-treat resistance (DTR; that is, resistance to all first-line antibiotics). DESIGN: Retrospective cohort. SETTING: 619 U.S. hospitals. PARTICIPANTS: Adult inpatients. MEASUREMENTS: Quarterly percentage change in antibiotic use was calculated using weighted linear regression. Machine learning selected candidate variables, and mixed models identified factors associated with new (vs. traditional) antibiotic use in DTR infections. RESULTS: Between quarter 1 of 2016 and quarter 2 of 2021, ceftolozane-tazobactam (approved 2014) and ceftazidime-avibactam (2015) predominated new antibiotic usage whereas subsequently approved gram-negative antibiotics saw relatively sluggish uptake. Among gram-negative infection hospitalizations, 0.7% (2551 [2631 episodes] of 362 142) displayed DTR pathogens. Patients were treated exclusively using traditional agents in 1091 of 2631 DTR episodes (41.5%), including "reserve" antibiotics such as polymyxins, aminoglycosides, and tigecycline in 865 of 1091 episodes (79.3%). Patients with bacteremia and chronic diseases had greater adjusted probabilities and those with do-not-resuscitate status, acute liver failure, and Acinetobacter baumannii complex and other nonpseudomonal nonfermenter pathogens had lower adjusted probabilities of receiving newer (vs. traditional) antibiotics for DTR infections, respectively. Availability of susceptibility testing for new antibiotics increased probability of usage. LIMITATION: Residual confounding. CONCLUSION: Despite FDA approval of 7 next-generation gram-negative antibiotics between 2014 and 2019, clinicians still frequently treat resistant gram-negative infections with older, generic antibiotics with suboptimal safety-efficacy profiles. Future antibiotics with innovative mechanisms targeting untapped pathogen niches, widely available susceptibility testing, and evidence demonstrating improved outcomes in resistant infections might enhance utilization. PRIMARY FUNDING SOURCE: U.S. Food and Drug Administration; NIH Intramural Research Program.
Asunto(s)
Antibacterianos , Infecciones por Bacterias Gramnegativas , Pautas de la Práctica en Medicina , Humanos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Antibacterianos/uso terapéutico , Estudios Retrospectivos , Estados Unidos , Pautas de la Práctica en Medicina/estadística & datos numéricos , Combinación de Medicamentos , Masculino , Tazobactam/uso terapéutico , Femenino , Persona de Mediana Edad , Cefalosporinas/uso terapéutico , Cefiderocol , Compuestos de Azabiciclo/uso terapéutico , Aprobación de Drogas , Sisomicina/análogos & derivados , Sisomicina/uso terapéutico , Bacterias Gramnegativas/efectos de los fármacos , United States Food and Drug Administration , Ceftazidima , TetraciclinasRESUMEN
Importance: Transferring patients to other hospitals because of inpatient saturation or need for higher levels of care was often challenging during the early waves of the COVID-19 pandemic. Understanding how transfer patterns evolved over time and amid hospital overcrowding could inform future care delivery and load balancing efforts. Objective: To evaluate trends in outgoing transfers at overall and caseload-strained hospitals during the COVID-19 pandemic vs prepandemic times. Design, Setting, and Participants: This retrospective cohort study used data for adult patients at continuously reporting US hospitals in the PINC-AI Healthcare Database. Data analysis was performed from February to July 2023. Exposures: Pandemic wave, defined as wave 1 (March 1, 2020, to May 31, 2020), wave 2 (June 1, 2020, to September 30, 2020), wave 3 (October 1, 2020, to June 19, 2021), Delta (June 20, 2021, to December 18, 2021), and Omicron (December 19, 2021, to February 28, 2022). Main Outcomes and Measures: Weekly trends in cumulative mean daily acute care transfers from all hospitals were assessed by COVID-19 status, hospital urbanicity, and census index (calculated as daily inpatient census divided by nominal bed capacity). At each hospital, the mean difference in transfer counts was calculated using pairwise comparisons of pandemic (vs prepandemic) weeks in the same census index decile and averaged across decile hospitals in each wave. For top decile (ie, high-surge) hospitals, fold changes (and 95% CI) in transfers were adjusted for hospital-level factors and seasonality. Results: At 681 hospitals (205 rural [30.1%] and 476 urban [69.9%]; 360 [52.9%] small with <200 beds and 321 [47.1%] large with ≥200 beds), the mean (SD) weekly outgoing transfers per hospital remained lower than the prepandemic mean of 12.1 (10.4) transfers per week for most of the pandemic, ranging from 8.5 (8.3) transfers per week during wave 1 to 11.9 (10.7) transfers per week during the Delta wave. Despite more COVID-19 transfers, overall transfers at study hospitals cumulatively decreased during each high national surge period. At 99 high-surge hospitals, compared with a prepandemic baseline, outgoing acute care transfers decreased in wave 1 (fold change -15.0%; 95% CI, -22.3% to -7.0%; P < .001), returned to baseline during wave 2 (2.2%; 95% CI, -4.3% to 9.2%; P = .52), and displayed a sustained increase in subsequent waves: 19.8% (95% CI, 14.3% to 25.4%; P < .001) in wave 3, 19.2% (95% CI, 13.4% to 25.4%; P < .001) in the Delta wave, and 15.4% (95% CI, 7.8% to 23.5%; P < .001) in the Omicron wave. Observed increases were predominantly limited to small urban hospitals, where transfers peaked (48.0%; 95% CI, 36.3% to 60.8%; P < .001) in wave 3, whereas large urban and small rural hospitals displayed little to no increases in transfers from baseline throughout the pandemic. Conclusions and Relevance: Throughout the COVID-19 pandemic, study hospitals reported paradoxical decreases in overall patient transfers during each high-surge period. Caseload-strained rural (vs urban) hospitals with fewer than 200 beds were unable to proportionally increase transfers. Prevailing vulnerabilities in flexing transfer capabilities for care or capacity reasons warrant urgent attention.
Asunto(s)
COVID-19 , Esguinces y Distensiones , Adulto , Humanos , COVID-19/epidemiología , Pandemias , Transferencia de Pacientes , Estudios Retrospectivos , Hospitales UrbanosRESUMEN
Seroprevalence studies are the gold standard for disease surveillance, and serology was used to determine eligibility for the first licensed dengue vaccine. However, expanding flavivirus endemicity, co-circulation, and vaccination complicate serology results. Among 713 healthy Cambodian children, a commonly used indirect dengue virus IgG ELISA (PanBio) had a lower specificity than previously reported (94% vs. 100%). Of those with false positive PanBio results, 46% had detectable neutralizing antibodies against other flaviviruses, with the highest frequency against West Nile virus (WNV). Immunity to non-dengue flaviviruses can impact dengue surveillance and potentially pre-vaccine screening efforts.
RESUMEN
IMPORTANCE: Many U.S. State crisis standards of care (CSC) guidelines incorporated Sequential Organ Failure Assessment (SOFA), a sepsis-related severity score, in pandemic triage algorithms. However, SOFA performed poorly in COVID-19. Although disease-specific scores may perform better, their prognostic utility over time and in overcrowded care settings remains unclear. OBJECTIVES: We evaluated prognostication by the modified 4C (m4C) score, a COVID-19-specific prognosticator that demonstrated good predictive capacity early in the pandemic, as a potential tool to standardize triage across time and hospital-surge environments. DESIGN: Retrospective observational cohort study. SETTING: Two hundred eighty-one U.S. hospitals in an administrative healthcare dataset. PARTICIPANTS: A total of 298,379 hospitalized adults with COVID-19 were identified from March 1, 2020, to January 31, 2022. m4C scores were calculated from admission diagnosis codes, vital signs, and laboratory values. MAIN OUTCOMES AND MEASURES: Hospital-surge index, a severity-weighted measure of COVID-19 caseload, was calculated for each hospital-month. Discrimination of in-hospital mortality by m4C and surge index-adjusted models was measured by area under the receiver operating characteristic curves (AUC). Calibration was assessed by training models on early pandemic waves and measuring fit (deviation from bisector) in subsequent waves. RESULTS: From March 2020 to January 2022, 298,379 adults with COVID-19 were admitted across 281 U.S. hospitals. m4C adequately discriminated mortality in wave 1 (AUC 0.779 [95% CI, 0.769-0.789]); discrimination was lower in subsequent waves (wave 2: 0.772 [95% CI, 0.765-0.779]; wave 3: 0.746 [95% CI, 0.743-0.750]; delta: 0.707 [95% CI, 0.702-0.712]; omicron: 0.729 [95% CI, 0.721-0.738]). m4C demonstrated reduced calibration in contemporaneous waves that persisted despite periodic recalibration. Performance characteristics were similar with and without adjustment for surge. CONCLUSIONS AND RELEVANCE: Mortality prediction by the m4C score remained robust to surge strain, making it attractive for when triage is most needed. However, score performance has deteriorated in recent waves. CSC guidelines relying on defined prognosticators, especially for dynamic disease processes like COVID-19, warrant frequent reappraisal to ensure appropriate resource allocation.
RESUMEN
Global dengue incidence has increased dramatically over the past few decades from approximately 500 000 reported cases in 2000 to over 5 million in 2019. This trend has been attributed to population growth in endemic areas, rapid unplanned urbanization, increasing global connectivity, and climate change expanding the geographic range of the Aedes spp. mosquito, among other factors. Reporting dengue surveillance data is key to understanding the scale of the problem, identifying important changes in the landscape of disease, and developing policies for clinical management, vector control and vaccine rollout. However, surveillance practices are not standardized, and data may be difficult to interpret particularly in low- and middle-income countries with fragmented health-care systems. The latest national dengue surveillance data for Cambodia was published in 2010. Since its publication, the country experienced marked changes in health policies, population demographics, climate and urbanization. How these changes affected dengue control remains unknown. In this article, we summarize two decades of policy changes, published literature, country statistics, and dengue case data collected by the Cambodia National Dengue Control Programme to: (i) identify important changes in the disease landscape; and (ii) derive lessons to inform future surveillance and disease control strategies. We report that while dengue case morbidity and mortality rates in Cambodia fell between 2002 and 2020, dengue incidence doubled and age at infection increased. Future national surveillance, disease prevention and treatment, and vector control policies will have to account for these changes to optimize disease control.
Le taux d'incidence de la dengue dans le monde a considérablement augmenté au cours des dernières décennies, passant d'environ 500 000 cas notifiés en 2000 à plus de 5 millions en 2019. Cette tendance est attribuée à la croissance démographique dans les zones d'endémie, à l'urbanisation rapide non planifiée, au développement de la connectivité à l'échelle internationale, ainsi qu'au changement climatique, qui agrandit le territoire géographique du moustique Aedes spp., entre autres. La communication des données de surveillance de la dengue est essentielle pour comprendre l'étendue du problème, identifier les principales variations de contexte entourant la maladie et mettre au point des politiques pour la prise en charge clinique, la lutte contre les vecteurs et le déploiement des vaccins. Les pratiques en matière de surveillance ne sont toutefois pas standardisées et les données peuvent être difficiles à interpréter, surtout dans les pays à revenu faible et intermédiaire où les systèmes de soins de santé sont fragmentés. Les données de surveillance les plus récentes concernant la dengue au Cambodge ont été publiées en 2010. Depuis leur publication, le pays a subi de profondes mutations au niveau des politiques de santé, de l'évolution démographique, du climat et de l'urbanisation. L'impact de ces mutations sur la lutte contre la dengue reste à établir. Dans le présent article, nous résumons deux décennies d'amendements politiques, de documentation, de statistiques nationales et d'informations collectées sur les cas par le programme cambodgien de lutte contre la dengue afin de: (i) définir les changements importants survenus dans le contexte entourant la maladie; mais aussi (ii) tirer des leçons en vue d'élaborer, à l'avenir, des stratégies de surveillance et de lutte contre la maladie. Nous signalons qu'en dépit d'une baisse des taux de morbidité et de mortalité liés aux cas de dengue entre 2002 et 2020 au Cambodge, son incidence a doublé et l'âge des patients au moment de l'infection a augmenté. Les futures politiques nationales de surveillance, de prévention et de traitement de la dengue, mais aussi de lutte contre ses vecteurs, devront tenir compte de ces changements de façon à mieux maîtriser la maladie.
La incidencia del dengue a nivel mundial ha aumentado considerablemente en las últimas décadas, desde aproximadamente 500 000 casos notificados en el año 2000 a más de 5 millones en 2019. Esta tendencia se ha atribuido al crecimiento de la población en zonas endémicas, a una urbanización rápida y no planificada, al aumento de la conectividad a nivel mundial y al cambio climático, que está permitiendo una distribución geográfica más amplia del mosquito Aedes spp., entre otros factores. Para comprender la magnitud del problema resulta clave la notificación de datos sobre vigilancia del dengue, la identificación de cambios importantes dentro del escenario de la enfermedad, la creación de políticas enfocadas a la gestión clínica, así como el control de vectores y la implantación de la vacuna. Sin embargo, las prácticas sobre vigilancia no están estandarizadas y es posible que sea difícil interpretar los datos, especialmente en países con ingresos medios y bajos, que cuentan con sistemas fragmentados de atención sanitaria. Los datos nacionales más recientes sobre vigilancia del dengue en Camboya se publicaron en 2010. Desde su publicación, el país experimentó cambios significativos en las políticas sanitarias, la demografía de la población, el clima y la urbanización. Aún no se sabe cómo afectaron dichos cambios al control del dengue. En el presente artículo, resumimos dos décadas de cambios políticos, de bibliografía publicada, de datos estadísticos a nivel nacional y datos sobre casos de dengue recopilados por el programa nacional de control de dengue en Camboya, con el fin de: (i) identificar cambios importantes en el escenario de la enfermedad; y (ii) extraer conclusiones para orientar futuras estrategias sobre vigilancia y control de la enfermedad. Informamos de que, aunque las tasas de morbilidad y mortalidad de los casos de dengue en Camboya descendieron entre 2002 y 2020, la incidencia del dengue se duplicó y la edad de infección aumentó. Las futuras políticas nacionales sobre vigilancia, prevención y tratamiento de la enfermedad y control de vectores deberán tener en cuenta estos cambios para optimizar el control de la enfermedad.
Asunto(s)
Aedes , Dengue , Animales , Humanos , Cambodia/epidemiología , Dengue/epidemiología , Política de Salud , Mosquitos Vectores , Vigilancia de GuardiaRESUMEN
Objective: Data from 19 years of national dengue surveillance in Cambodia (2002-2020) were analyzed to describe trends in dengue case characteristics and incidence. Methods: Generalized additive models were fitted to dengue case incidence and characteristics (mean age, case phenotype, fatality) over time. Dengue incidence in a pediatric cohort study (2018-2020) was compared to national data during the same period to evaluate disease under-estimation by national surveillance. Findings: During 2002-2020, there were 353,270 cases of dengue (average age-adjusted incidence 1.75 cases/1,000 persons/year) recorded in Cambodia, with an estimated 2.1-fold increase in case incidence between 2002 and 2020 (slope = 0.0058, SE = 0.0021, p = 0.006). Mean age of infected individuals increased from 5.8 years in 2002 to 9.1 years in 2020 (slope = 0.18, SE = 0.088, p <0.001); case fatality rates decreased from 1.77% in 2002 to 0.10% in 2020 (slope = -0.16, SE = 0.0050, p <0.001). When compared to cohort data, national data under-estimated clinically apparent dengue case incidence by 5.0-fold (95% CI 0.2 - 26.5), and overall dengue case incidence (both apparent and inapparent cases) by 33.6-fold (range: 18.7- 53.6). Conclusion: Dengue incidence in Cambodia is increasing and disease is shifting to older pediatric populations. National surveillance continues to under-estimate case numbers. Future interventions should account for disease under-estimation and shifting demographics for scaling and to target appropriate age groups.
RESUMEN
BACKGROUND: The four co-circulating and immunologically interactive dengue virus serotypes (DENV1-4) pose a unique challenge to vaccine design because sub-protective immunity can increase the risk of severe dengue disease. Existing dengue vaccines have lower efficacy in DENV seronegative individuals but higher efficacy in DENV exposed individuals. There is an urgent need to identify immunological measures that are strongly associated with protection against viral replication and disease following sequential exposure to distinct serotypes. METHODS/DESIGN: This is a phase 1 trial wherein healthy adults with neutralizing antibodies to zero (seronegative), one non-DENV3 (heterotypic), or more than one (polytypic) DENV serotype will be vaccinated with the live attenuated DENV3 monovalent vaccine rDEN3Δ30/31-7164. We will examine how pre-vaccine host immunity influences the safety and immunogenicity of DENV3 vaccination in a non-endemic population. We hypothesize that the vaccine will be safe and well tolerated, and all groups will have a significant increase in the DENV1-4 neutralizing antibody geometric mean titer between days 0 and 28. Compared to the seronegative group, the polytypic group will have lower mean peak vaccine viremia, due to protection conferred by prior DENV exposure, while the heterotypic group will have higher mean peak viremia, due to mild enhancement. Secondary and exploratory endpoints include characterizing serological, innate, and adaptive cell responses; evaluating proviral or antiviral contributions of DENV-infected cells; and immunologically profiling the transcriptome, surface proteins, and B and T cell receptor sequences and affinities of single cells in both peripheral blood and draining lymph nodes sampled via serial image-guided fine needle aspiration. DISCUSSION: This trial will compare the immune responses after primary, secondary, and tertiary DENV exposure in naturally infected humans living in non-endemic areas. By evaluating dengue vaccines in a new population and modeling the induction of cross-serotypic immunity, this work may inform vaccine evaluation and broaden potential target populations. TRIAL REGISTRATION: NCT05691530 registered on January 20, 2023.
Asunto(s)
Vacunas contra el Dengue , Dengue Grave , Adulto , Humanos , Viremia , Vacunas Atenuadas , Vacunación , Anticuerpos NeutralizantesRESUMEN
Introduction: Aedes spp. are the most prolific mosquito vectors in the world. Found on every continent, they can effectively transmit various arboviruses, including the dengue virus which continues to cause outbreaks worldwide and is spreading into previously non-endemic areas. The lack of widely available dengue vaccines accentuates the importance of targeted vector control strategies to reduce the dengue burden. High-throughput sensitive tools to estimate human-mosquito contact and evaluate vector control interventions are lacking. We propose a novel serological tool that allows rapid screening of large human cohorts for exposure to potentially infectious mosquitoes and effective targeting of vector control. Methods: We tested 563 serum samples from a longitudinal pediatric cohort study previously conducted in Cambodia. Children enrolled in the study were dengue-naïve at baseline and were followed biannually for dengue incidence for two years. We used Western blotting and enzyme-linked immunosorbent assays to identify the most immunogenic Aedes aegypti salivary proteins and measure total anti- Ae. Aegypti IgG. Results: We found a strong correlation (r s =0.86) between the combined IgG responses against AeD7L1 and AeD7L2 recombinant proteins and those to whole salivary gland homogenate. We observed seasonal fluctuations of AeD7L1+2 IgG responses, corresponding to Aedes spp. abundance in the region, and no cross-reactivity with Culex quinquefasciatus and Anopheles dirus mosquitoes. The baseline median AeD7L1+2 IgG responses for young children were higher in those who developed asymptomatic dengue versus those who developed symptomatic dengue. Conclusion: The IgG response against AeD7L1+2 recombinant proteins is a highly sensitive and Aedes specific marker of human exposure to Aedes bites that can facilitate standardization of future serosurveys and epidemiological studies by its ability to provide a robust estimation of human-mosquito contact in a high-throughput fashion.
RESUMEN
Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.