Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Alcohol ; 118: 9-16, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38582261

RESUMEN

On December 8th 2023, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at the University of Colorado Anschutz Medical Campus in Aurora, Colorado. The 2023 meeting focused broadly on how acute and chronic alcohol exposure leads to immune dysregulation, and how this contributes to damage in multiple tissues and organs. These include impaired lung immunity, intestinal dysfunction, autoimmunity, the gut-Central Nervous System (CNS) axis, and end-organ damage. In addition, diverse areas of alcohol research covered multiple pathways behind alcohol-induced cellular dysfunction, including inflammasome activation, changes in miRNA expression, mitochondrial metabolism, gene regulation, and transcriptomics. Finally, the work presented at this meeting highlighted novel biomarkers and therapeutic interventions for patients suffering from alcohol-induced organ damage.

2.
Alcohol Alcohol ; 59(3)2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38581190

RESUMEN

AIM: This matched case-control study aimed to provide epidemiologic evidence of increased burden of respiratory symptoms and pulmonary function decline among people living with human immunodeficiency virus (HIV) and a history of heavy alcohol consumption. METHODS: Cases were participants with HIV (PWH; n = 75, 33%), and controls were participants without HIV (PWoH; n = 150, 67%). PWH were matched to PWoH by age and sex in the ratio of 1:2. Eligible participants responded to the respiratory health National Health and Nutrition Examination Survey questionnaire [prolonged coughs (≥3 months), bringing up of phlegm (≥3 months), and a history of wheezing or whistling in the chest (past year)]. The effects of both alcohol and HIV on participants' pulmonary function were determined using linear regression analysis. RESULTS: History of heavy alcohol consumption was more prevalent among PWH (40%) compared to PWoH (27%). PWH who had a history of heavy alcohol consumption had a higher prevalence of coughing most days (45% vs. 4%, P = .0010), bringing up phlegm most days (31% vs. 0%, P = .0012), and wheezing or whistling in the chest (40% vs. 20%, P = .058) compared to participants who did not heavily consume alcohol. Furthermore, a history of heavy alcohol consumption was associated with decreased forced expiratory volume (ml) in 1 s/forced vital capacity among PWH (ß = - 0.098 95% C.I. -0.16, -0.04, P = .03) after adjusting for having smoked at least 100 cigarettes in life. CONCLUSION: A history of heavy alcohol use increased respiratory symptoms and suppressed pulmonary function among people living with HIV. This study provides epidemiological evidence of the respiratory symptom burden of people living with HIV who have a history of heavy alcohol consumption.


Asunto(s)
Infecciones por VIH , VIH , Humanos , Encuestas Nutricionales , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Ruidos Respiratorios , Estudios de Casos y Controles , Consumo de Bebidas Alcohólicas/epidemiología
3.
Alcohol Clin Exp Res (Hoboken) ; 48(5): 810-826, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38499395

RESUMEN

BACKGROUND: People with alcohol use disorder (AUD) have an increased risk of developing pneumonia and pulmonary diseases. Alveolar macrophages (AMs) are immune cells of the lower respiratory tract that are necessary for clearance of pathogens. However, alcohol causes AM oxidative stress, mitochondrial damage and dysfunction, and diminished phagocytic capacity, leading to lung injury and immune suppression. METHODS: AMs were isolated by bronchoalveolar lavage from people with AUD and male and female C57BL/6J mice given chronic ethanol (20% w/v, 12 weeks) in drinking water. The peroxisome proliferator-activated receptor γ ligand, pioglitazone, was used to treat human AMs ex vivo (10 µM, 24 h) and mice in vivo by oral gavage (10 mg/kg/day). Levels of AM mitochondrial superoxide and hypoxia-inducible factor-1 alpha (HIF-1α) mRNA, a marker of oxidative stress, were measured by fluorescence microscopy and RT-qPCR, respectively. Mouse AM phagocytic ability was determined by internalized Staphylococcus aureus, and mitochondrial capacity, dependency, and flexibility for glucose, long-chain fatty acid, and glutamine oxidation were measured using an extracellular flux analyzer. In vitro studies used a murine AM cell line, MH-S (±0.08% ethanol, 72 h) to investigate mitochondrial fuel oxidation and ATP-linked respiration. RESULTS: Pioglitazone treatment decreased mitochondrial superoxide in AMs from people with AUD and ethanol-fed mice and HIF-1α mRNA in ethanol-fed mouse lungs. Pioglitazone also reversed mouse AM glutamine oxidation and glucose or long-chain fatty acid flexibility to meet basal oxidation needs. In vitro, ethanol decreased the rate of AM mitochondrial and total ATP production, and pioglitazone improved changes in glucose and glutamine oxidation. CONCLUSIONS: Pioglitazone reversed chronic alcohol-induced oxidative stress in human AM and mitochondrial substrate oxidation flexibility and superoxide levels in mouse AM. Decreased ethanol-induced AM HIF-1α mRNA with pioglitazone suggests that this pathway may be a focus for metabolic-targeted therapeutics to improve morbidity and mortality in people with AUD.

4.
Free Radic Biol Med ; 211: 24-34, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043868

RESUMEN

The intricate relationship between calcium (Ca2+) homeostasis and mitochondrial function is crucial for cellular metabolic adaptation in tumor cells. Ca2+-initiated signaling maintains mitochondrial respiratory capacity and ATP synthesis, influencing critical cellular processes in cancer development. Previous studies by our group have shown that the homocysteine-inducible ER Protein with Ubiquitin-Like Domain 1 (HERPUD1) regulates inositol 1,4,5-trisphosphate receptor (ITPR3) levels and intracellular Ca2+ signals in tumor cells. This study explores the role of HERPUD1 in regulating mitochondrial function and tumor cell migration by controlling ITPR3-dependent Ca2+ signals. We found HERPUD1 levels correlated with mitochondrial function in tumor cells, with HERPUD1 deficiency leading to enhanced mitochondrial activity. HERPUD1 knockdown increased intracellular Ca2+ release and mitochondrial Ca2+ influx, which was prevented using the ITPR3 antagonist xestospongin C or the Ca2+ chelator BAPTA-AM. Furthermore, HERPUD1 expression reduced tumor cell migration by controlling ITPR3-mediated Ca2+ signals. HERPUD1-deficient cells exhibited increased migratory capacity, which was attenuated by treatment with xestospongin C or BAPTA-AM. Additionally, HERPUD1 deficiency led to reactive oxygen species-dependent activation of paxillin and FAK proteins, which are associated with enhanced cell migration. Our findings highlight the pivotal role of HERPUD1 in regulating mitochondrial function and cell migration by controlling intracellular Ca2+ signals mediated by ITPR3. Understanding the interplay between HERPUD1 and mitochondrial Ca2+ regulation provides insights into potential therapeutic targets for cancer treatment and other pathologies involving altered energy metabolism.


Asunto(s)
Calcio , Neoplasias , Humanos , Calcio/metabolismo , Señalización del Calcio/fisiología , Receptores de Inositol 1,4,5-Trifosfato/genética , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Factores de Transcripción/metabolismo
5.
Sci Rep ; 13(1): 15276, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714998

RESUMEN

People with HIV remain at greater risk for both infectious and non-infectious pulmonary diseases even after antiretroviral therapy initiation and CD4 cell count recovery. These clinical risks reflect persistent HIV-mediated defects in innate and adaptive immunity, including in the alveolar macrophage, a key innate immune effector in the lungs. In this proof-of-concept pilot study, we leveraged paired RNA-seq and ATAC-seq analyses of human alveolar macrophages obtained with research bronchoscopy from people with and without HIV to highlight the potential for recent methodologic advances to generate novel hypotheses about biological pathways that may contribute to impaired pulmonary immune function in people with HIV. In addition to 35 genes that were differentially expressed in macrophages from people with HIV, gene set enrichment analysis identified six gene sets that were differentially regulated. ATAC-seq analysis revealed 115 genes that were differentially accessible for people with HIV. Data-driven integration of the findings from these complementary, high-throughput techniques using xMWAS identified distinct clusters involving lipoprotein lipase and inflammatory pathways. By bringing together transcriptional and epigenetic data, this analytic approach points to several mechanisms, including previously unreported pathways, that warrant further exploration as potential mediators of the increased risk of pulmonary disease in people with HIV.


Asunto(s)
Macrófagos Alveolares , Enfermedades no Transmisibles , Humanos , Proyectos Piloto , RNA-Seq , Macrófagos , Inmunidad Adaptativa
6.
Alcohol ; 110: 57-63, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37061143

RESUMEN

On October 26th, 2022 the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite symposium at the annual meeting of the Society for Leukocyte Biology in Hawaii. The 2022 meeting focused broadly on the immunological consequences of acute, chronic, and prenatal alcohol exposure and how these contribute to damage in multiple organs and tissues. These included alcohol-induced neuroinflammation, impaired lung immunity, intestinal dysfunction, and decreased anti-microbial and anti-viral responses. In addition, research presented covered multiple pathways behind alcohol-induced cellular dysfunction, including mitochondrial metabolism, cellular bioenergetics, gene regulation, and epigenetics. Finally, the work presented highlighted potential biomarkers and novel avenues of treatment for alcohol-induced organ damage.


Asunto(s)
Efectos Tardíos de la Exposición Prenatal , Opinión Pública , Embarazo , Femenino , Humanos , Inflamación/inducido químicamente , Etanol/efectos adversos , Hawaii
7.
bioRxiv ; 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36778349

RESUMEN

RGS14 is a complex multifunctional scaffolding protein that is highly enriched within pyramidal cells (PCs) of hippocampal area CA2. There, RGS14 suppresses glutamate-induced calcium influx and related G protein and ERK signaling in dendritic spines to restrain postsynaptic signaling and plasticity. Previous findings show that, unlike PCs of hippocampal areas CA1 and CA3, CA2 PCs are resistant to a number of neurological insults, including degeneration caused by temporal lobe epilepsy (TLE). While RGS14 is protective against peripheral injury, similar roles for RGS14 during pathological injury in hippocampus remain unexplored. Recent studies show that area CA2 modulates hippocampal excitability, generates epileptiform activity and promotes hippocampal pathology in animal models and patients with TLE. Because RGS14 suppresses CA2 excitability and signaling, we hypothesized that RGS14 would moderate seizure behavior and early hippocampal pathology following seizure activity. Using kainic acid (KA) to induce status epilepticus (KA-SE) in mice, we show loss of RGS14 (RGS14 KO) accelerated onset of limbic motor seizures and mortality compared to wild type (WT) mice, and that KA-SE upregulated RGS14 protein expression in CA2 and CA1 PCs of WT. Utilizing proteomics, we saw loss of RGS14 impacted the expression of a number of proteins at baseline and after KA-SE, many of which associated unexpectedly with mitochondrial function and oxidative stress. RGS14 was shown to localize to the mitochondria in CA2 PCs of mice and reduce mitochondrial respiration in vitro . As a readout of oxidative stress, we found RGS14 KO dramatically increased 3-nitrotyrosine levels in CA2 PCs, which was greatly exacerbated following KA-SE and correlated with a lack of superoxide dismutase 2 (SOD2) induction. Assessing for hallmarks of seizure pathology in RGS14 KO, we observed worse neuronal injury in area CA3 (but none in CA2 or CA1), and a lack of microgliosis in CA1 and CA2 compared to WT. Together, our data demonstrates a newly appreciated neuroprotective role for RGS14 against intense seizure activity in hippocampus. Our findings are consistent with a model where, after seizure, RGS14 is upregulated to support mitochondrial function and prevent oxidative stress in CA2 PCs, limit seizure onset and hippocampal neuronal injury, and promote microglial activation in hippocampus.

8.
Alcohol Clin Exp Res (Hoboken) ; 47(1): 36-44, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36446606

RESUMEN

Alcohol misuse contributes to the dysregulation of immune responses and multiorgan dysfunction across various tissues, which are associated with higher risk of morbidity and mortality in people with alcohol use disorders. Organ-specific immune cells, including microglia in the brain, alveolar macrophages in the lungs, and Kupffer cells in the liver, play vital functions in host immune defense through tissue repair and maintenance of homeostasis. However, binge drinking and chronic alcohol misuse impair these immune cells' abilities to regulate inflammatory signaling and metabolism, thus contributing to multiorgan dysfunction. Further complicating these delicate systems, immune cell dysfunction associated with alcohol misuse is exacerbated by aging and gut barrier leakage. This critical review describes recent advances in elucidating the potential mechanisms by which alcohol misuse leads to derangements in host immunity and highlights current gaps in knowledge that may be the focus of future investigations.


Asunto(s)
Alcoholismo , Humanos , Alcoholismo/metabolismo , Etanol/metabolismo , Hígado , Macrófagos Alveolares/metabolismo , Pulmón
9.
Alcohol ; 106: 30-43, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36328183

RESUMEN

Alcohol use disorders (AUD) cause alveolar macrophage (AM) immune dysfunction and increase risk of lung infections. Excessive alcohol use causes AM oxidative stress, which impairs AM phagocytosis and pathogen clearance from the alveolar space. Alcohol induces expression of NADPH oxidases (Noxes), primary sources of oxidative stress in AM. In contrast, alcohol decreases AM peroxisome proliferator-activated receptor gamma (PPARγ), a critical regulator of AM immune function. To explore the underlying molecular mechanisms for these effects of alcohol, we hypothesized that ethanol promotes CCAAT/enhancer-binding protein beta (C/EBPß)-mediated suppression of Nox-related microRNAs (miRs), in turn enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. We also hypothesized that PPARγ activation with pioglitazone (PIO) would reverse alcohol-induced C/EBPß expression and attenuate AM oxidative stress and phagocytic dysfunction. Cells from the mouse AM cell line (MH-S) were exposed to ethanol in vitro or primary AM were isolated from mice fed ethanol in vivo. Ethanol enhanced C/EBPß expression, decreased Nox 1-related miR-1264 and Nox 2-related miR-107 levels, and increased Nox1, Nox2, and Nox 4 expression in MH-S cells in vitro and mouse AM in vivo. These alcohol-induced AM derangements were abrogated by loss of C/EBPß, overexpression of miRs-1264 or -107, or PIO treatment. These findings identify C/EBPß and Nox-related miRs as novel therapeutic targets for PPARγ ligands, which could provide a translatable strategy to mitigate susceptibility to lung infections in people with a history of AUD. These studies further clarify the molecular underpinnings for a previous clinical trial using short-term PIO treatment to improve AM immunity in AUD individuals.


Asunto(s)
Etanol , Macrófagos Alveolares , MicroARNs , Procesamiento Postranscripcional del ARN , Animales , Ratones , Alcoholismo/tratamiento farmacológico , Alcoholismo/genética , Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/patología , MicroARNs/genética , MicroARNs/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo
10.
Alcohol ; 103: 1-7, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35659577

RESUMEN

On November 19th, 2021, the annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held at Loyola University Chicago Health Sciences Campus in Maywood, Illinois. The 2021 meeting focused on how alcohol misuse is linked to immune system derangements, leading to tissue and organ damage, and how this research can be translated into improving treatment of alcohol-related disease. This meeting was divided into three plenary sessions: the first session focused on how alcohol misuse affects different parts of the immune system, the second session presented research on mechanisms of organ damage from alcohol misuse, and the final session highlighted research on potential therapeutic targets for treating alcohol-mediated tissue damage. Diverse areas of alcohol research were covered during the meeting, from alcohol's effect on pulmonary systems and neuroinflammation to epigenetic changes, senescence markers, and microvesicle particles. These presentations yielded a thoughtful discussion on how the findings can lead to therapeutic treatments for people suffering from alcohol-related diseases.


Asunto(s)
Alcoholismo , Alcoholismo/genética , Epigénesis Genética , Etanol/efectos adversos , Humanos , Inflamación/genética , Opinión Pública
11.
Front Immunol ; 13: 865522, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634317

RESUMEN

Although the epidemiology of bacterial pneumonia and excessive alcohol use is well established, the mechanisms by which alcohol induces risk of pneumonia are less clear. Patterns of alcohol misuse, termed alcohol use disorders (AUD), affect about 15 million people in the United States. Compared to otherwise healthy individuals, AUD increase the risk of respiratory infections and acute respiratory distress syndrome (ARDS) by 2-4-fold. Levels and fragmentation of hyaluronic acid (HA), an extracellular glycosaminoglycan of variable molecular weight, are increased in chronic respiratory diseases, including ARDS. HA is largely involved in immune-assisted wound repair and cell migration. Levels of fragmented, low molecular weight HA are increased during inflammation and decrease concomitant with leukocyte levels following injury. In chronic respiratory diseases, levels of fragmented HA and leukocytes remain elevated, inflammation persists, and respiratory infections are not cleared efficiently, suggesting a possible pathological mechanism for prolonged bacterial pneumonia. However, the role of HA in alcohol-induced immune dysfunction is largely unknown. This mini literature review provides insights into understanding the role of HA signaling in host immune defense following excessive alcohol use. Potential therapeutic strategies to mitigate alcohol-induced immune suppression in bacterial pneumonia and HA dysregulation are also discussed.


Asunto(s)
Alcoholismo , Neumonía Bacteriana , Síndrome de Dificultad Respiratoria , Alcoholismo/complicaciones , Etanol , Humanos , Ácido Hialurónico , Inflamación/complicaciones , Neumonía Bacteriana/complicaciones , Estados Unidos
12.
Front Immunol ; 13: 865492, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35634337

RESUMEN

Excessive alcohol use increases the risk of developing respiratory infections partially due to impaired alveolar macrophage (AM) phagocytic capacity. Previously, we showed that chronic ethanol (EtOH) exposure led to mitochondrial derangements and diminished oxidative phosphorylation in AM. Since oxidative phosphorylation is needed to meet the energy demands of phagocytosis, EtOH mediated decreases in oxidative phosphorylation likely contribute to impaired AM phagocytosis. Treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, pioglitazone (PIO), improved EtOH-mediated decreases in oxidative phosphorylation. In other models, hypoxia-inducible factor-1 alpha (HIF-1α) has been shown to mediate the switch from oxidative phosphorylation to glycolysis; however, the role of HIF-1α in chronic EtOH mediated derangements in AM has not been explored. We hypothesize that AM undergo a metabolic shift from oxidative phosphorylation to a glycolytic phenotype in response to chronic EtOH exposure. Further, we speculate that HIF-1α is a critical mediator of this metabolic switch. To test these hypotheses, primary mouse AM (mAM) were isolated from a mouse model of chronic EtOH consumption and a mouse AM cell line (MH-S) were exposed to EtOH in vitro. Expression of HIF-1α, glucose transporters (Glut1 and 4), and components of the glycolytic pathway (Pfkfb3 and PKM2), were measured by qRT-PCR and western blot. Lactate levels (lactate assay), cell energy phenotype (extracellular flux analyzer), glycolysis stress tests (extracellular flux analyzer), and phagocytic function (fluorescent microscopy) were conducted. EtOH exposure increased expression of HIF-1α, Glut1, Glut4, Pfkfb3, and PKM2 and shifted AM to a glycolytic phenotype. Pharmacological stabilization of HIF-1α via cobalt chloride treatment in vitro mimicked EtOH-induced AM derangements (increased glycolysis and diminished phagocytic capacity). Further, PIO treatment diminished HIF-1α levels and reversed glycolytic shift following EtOH exposure. These studies support a critical role for HIF-1α in mediating the glycolytic shift in energy metabolism of AM during excessive alcohol use.


Asunto(s)
Glucólisis , Macrófagos Alveolares , Animales , Etanol/efectos adversos , Transportador de Glucosa de Tipo 1 , Hipoxia , Ácido Láctico , Ratones
13.
Front Immunol ; 13: 864817, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35432348

RESUMEN

Globally, an estimated 107 million people have an alcohol use disorder (AUD) leading to 2.8 million premature deaths each year. Tuberculosis (TB) is one of the leading causes of death globally and over 8% of global TB cases are estimated to be attributable to AUD. Social determinants of health such as poverty and undernutrition are often shared among those with AUD and TB and could explain the epidemiologic association between them. However, recent studies suggest that these shared risk factors do not fully account for the increased risk of TB in people with AUD. In fact, AUD has been shown to be an independent risk factor for TB, with a linear increase in the risk for TB with increasing alcohol consumption. While few studies have focused on potential biological mechanisms underlying the link between AUD and TB, substantial overlap exists between the effects of alcohol on lung immunity and the mechanisms exploited by Mycobacterium tuberculosis (Mtb) to establish infection. Alcohol misuse impairs the immune functions of the alveolar macrophage, the resident innate immune effector in the lung and the first line of defense against Mtb in the lower respiratory tract. Chronic alcohol ingestion also increases oxidative stress in the alveolar space, which could in turn facilitate Mtb growth. In this manuscript, we review the epidemiologic data that links AUD to TB. We discuss the existing literature on the potential mechanisms by which alcohol increases the risk of TB and review the known effects of alcohol ingestion on lung immunity to elucidate other mechanisms that Mtb may exploit. A more in-depth understanding of the link between AUD and TB will facilitate the development of dual-disease interventions and host-directed therapies to improve lung health and long-term outcomes of TB.


Asunto(s)
Alcoholismo , Tuberculosis , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/epidemiología , Alcoholismo/complicaciones , Alcoholismo/epidemiología , Etanol , Humanos , Macrófagos Alveolares , Mycobacterium tuberculosis , Tuberculosis/complicaciones
14.
Nat Metab ; 3(12): 1694-1705, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34931082

RESUMEN

Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome-host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans. VB is absent in germ-free mice and their mitochondria but present in ex-germ-free conventionalized mice and their mitochondria. Mechanistic studies in vivo and in vitro show VB is produced by diverse bacterial species and inhibits mitochondrial fatty acid oxidation through decreasing cellular carnitine and mitochondrial long-chain acyl-coenzyme As. VB administration to germ-free and conventional mice increases visceral fat mass and exacerbates hepatic steatosis with a western diet but not control diet. Thus, VB provides a molecular target to understand and potentially manage microbiome-host symbiosis or dysbiosis in diet-dependent obesity.


Asunto(s)
Metabolismo Energético , Interacciones Microbiota-Huesped , Microbiota , Obesidad/metabolismo , Adiposidad , Animales , Dieta Occidental , Ácidos Grasos/metabolismo , Microbioma Gastrointestinal , Humanos , Metabolismo de los Lípidos , Hígado/metabolismo , Ratones , Mitocondrias/metabolismo , Obesidad/etiología , Oxidación-Reducción
15.
J Immunol ; 207(2): 483-492, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34193599

RESUMEN

Alcohol use disorders (AUD) increase susceptibility to respiratory infections by 2- to 4-fold in part because of impaired alveolar macrophage (AM) immune function. Alcohol causes AM oxidative stress, diminishing AM phagocytic capacity and clearance of microbes from the alveolar space. Alcohol increases AM NADPH oxidases (Noxes), primary sources of AM oxidative stress, and reduces peroxisome proliferator-activated receptor γ (PPARγ) expression, a critical regulator of AM immune function. To investigate the underlying mechanisms of these alcohol-induced AM derangements, we hypothesized that alcohol stimulates CCAAT/enhancer-binding protein ß (C/EBPß) to suppress Nox-related microRNAs (miRs), thereby enhancing AM Nox expression, oxidative stress, and phagocytic dysfunction. Furthermore, we postulated that pharmacologic PPARγ activation with pioglitazone would inhibit C/EBPß and attenuate alcohol-induced AM dysfunction. AM isolated from human AUD subjects or otherwise healthy control subjects were examined. Compared with control AM, alcohol activated AM C/EBPß, decreased Nox1-related miR-1264 and Nox2-related miR-107, and increased Nox1, Nox2, and Nox4 expression and activity. These alcohol-induced AM derangements were abrogated by inhibition of C/EBPß, overexpression of miR-1264 or miR-107, or pioglitazone treatment. These findings define novel molecular mechanisms of alcohol-induced AM dysfunction mediated by C/EBPß and Nox-related miRs that are amenable to therapeutic targeting with PPARγ ligands. These results demonstrate that PPARγ ligands provide a novel and rapidly translatable strategy to mitigate susceptibility to respiratory infections and related morbidity in individuals with AUD.


Asunto(s)
Alcoholismo/tratamiento farmacológico , Alcoholismo/metabolismo , Etanol/efectos adversos , Macrófagos Alveolares/efectos de los fármacos , Fagocitos/efectos de los fármacos , Pioglitazona/farmacología , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Línea Celular , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Macrófagos Alveolares/metabolismo , Masculino , NADPH Oxidasas/metabolismo , Estrés Oxidativo/efectos de los fármacos , PPAR gamma/metabolismo , Fagocitos/metabolismo
16.
Ann Am Thorac Soc ; 18(7): 1087-1097, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34242148

RESUMEN

Pneumonia causes a significant burden of disease worldwide. Although all populations are at risk of pneumonia, those at extremes of age and those with immunosuppressive disorders, underlying respiratory disease, and critical illness are particularly vulnerable. Although clinical practice guidelines addressing the management and treatment of pneumonia exist, few of the supporting studies focus on the crucial contributions of the host in pneumonia pathogenesis and recovery. Such essential considerations include the host risk factors that lead to susceptibility to lung infections; biomarkers reflecting the host response and the means to pursue host-directed pneumonia therapy; systemic effects of pneumonia on the host; and long-term health outcomes after pneumonia. To address these gaps, the Pneumonia Working Group of the Assembly on Pulmonary Infection and Tuberculosis led a workshop held at the American Thoracic Society meeting in May 2018 with overarching objectives to foster attention, stimulate research, and promote funding for short-term and long-term investigations into the host contributions to pneumonia. The workshop involved participants from various disciplines with expertise in lung infection, pneumonia, sepsis, immunocompromised patients, translational biology, data science, genomics, systems biology, and clinical trials. This workshop report summarizes the presentations and discussions and important recommendations for future clinical pneumonia studies. These recommendations include establishing consensus disease and outcome definitions, improved phenotyping, development of clinical study networks, standardized data and biospecimen collection and protocols, and development of innovative trial designs.


Asunto(s)
Neumonía , Consenso , Enfermedad Crítica , Humanos , Huésped Inmunocomprometido , Neumonía/terapia , Informe de Investigación , Estados Unidos
17.
Am J Pathol ; 191(10): 1732-1742, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34186073

RESUMEN

Alcohol misuse and smoking are risk factors for pneumonia, yet the impact of combined cigarette smoke and alcohol on pneumonia remains understudied. Smokers who misuse alcohol form lung malondialdehyde-acetaldehyde (MAA) protein adducts and have decreased levels of anti-MAA secretory IgA (sIgA). Transforming growth factor-ß (TGF-ß) down-regulates polymeric Ig receptor (pIgR) on mucosal epithelium, resulting in decreased sIgA transcytosis to the mucosa. It is hypothesized that MAA-adducted lung protein increases TGF-ß, preventing expression of epithelial cell pIgR and decreasing sIgA. Cigarette smoke and alcohol co-exposure on sIgA and TGF-ß in human bronchoalveolar lavage fluid and in mice instilled with MAA-adducted surfactant protein D (SPD-MAA) were studied herein. Human bronchial epithelial cells (HBECs) and mouse tracheal epithelial cells were treated with SPD-MAA and sIgA and TGF-ß was measured. Decreased sIgA and increased TGF-ß were observed in bronchoalveolar lavage from combined alcohol and smoking groups in humans and mice. CD204 (MAA receptor) knockout mice showed no changes in sIgA. SPD-MAA decreased pIgR in HBECs. Conversely, SPD-MAA stimulated TGF-ß release in both HBECs and mouse tracheal epithelial cells, but not in CD204 knockout mice. SPD-MAA stimulated TGF-ß in alveolar macrophage cells. These data show that MAA-adducted surfactant protein stimulates lung epithelial cell TGF-ß, down-regulates pIgR, and decreases sIgA transcytosis. These data provide a mechanism for the decreased levels of sIgA observed in smokers who misuse alcohol.


Asunto(s)
Acetaldehído/metabolismo , Alcoholismo/complicaciones , Epitelio/metabolismo , Inmunoglobulina A/metabolismo , Pulmón/metabolismo , Malondialdehído/metabolismo , Fumadores , Animales , Líquido del Lavado Bronquioalveolar , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Etanol , Humanos , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Transporte de Proteínas , Proteínas/metabolismo , Receptores de Inmunoglobulina Polimérica/metabolismo , Fumar/efectos adversos , Transcitosis , Factor de Crecimiento Transformador beta/metabolismo
18.
AIDS Res Hum Retroviruses ; 37(3): 224-232, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33059459

RESUMEN

Despite the advent of antiretroviral therapy, people living with HIV suffer from a range of infectious and noninfectious pulmonary complications. HIV impairs antioxidant defenses and innate immune function of the alveolar macrophage by diminishing granulocyte macrophage-colony stimulating factor (GM-CSF) signaling. Since GM-CSF may be linked to mitochondria, we sought to determine the effects of HIV on GM-CSF receptor expression and alveolar macrophage mitochondrial function. At an academic medical center, studies were completed on alveolar macrophages isolated from both wild-type and HIV transgenic (HIV Tg) rats and human subjects with and without HIV. Primary macrophages were plated and evaluated for expression of GM-CSF receptor beta, phagocytic index, and mitochondrial function in the presence and absence of GM-CSF treatment. GM-CSF receptor expression and mitochondrial function were impaired in macrophages isolated from HIV Tg rats, and treatment with GM-CSF restored GM-CSF receptor expression and mitochondrial function. GM-CSF treatment of HIV Tg rats also increased alveolar macrophage levels of the mitochondrial proteins voltage-dependent anion-selective channel 1 (VDAC) and glucose-regulated protein 75 (Grp75). Similar to the HIV Tg rat model, impairments in mitochondrial bioenergetics were confirmed in alveolar macrophages isolated from human subjects with HIV. HIV-associated impairments in alveolar macrophage mitochondrial bioenergetics likely contribute to innate immune dysfunction in HIV infection, and GM-CSF treatment may offer a novel therapeutic strategy for mitigating these deleterious effects.


Asunto(s)
Infecciones por VIH , Macrófagos Alveolares , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Granulocitos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/metabolismo , Proteínas del Virus de la Inmunodeficiencia Humana/metabolismo , Humanos , Macrófagos , Mitocondrias , Ratas
19.
Alcohol ; 90: 27-38, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33278514

RESUMEN

Excessive alcohol users have increased risk of developing respiratory infections in part due to oxidative stress-induced alveolar macrophage (AM) phagocytic dysfunction. Chronic ethanol exposure increases cellular oxidative stress in AMs via upregulation of NADPH oxidase (Nox) 4, and treatment with the peroxisome proliferator-activated receptor gamma (PPARγ) ligand, rosiglitazone, decreases ethanol-induced Nox4. However, the mechanism by which ethanol induces Nox4 expression and the PPARγ ligand reverses this defect has not been elucidated. Since microRNA (miR)-92a has been predicted to target Nox4 for destabilization, we hypothesized that ethanol exposure decreases miR-92a expression and leads to Nox4 upregulation. Previous studies have implicated mitochondrial-derived oxidative stress in AM dysfunction. We further hypothesized that ethanol increases mitochondrial-derived AM oxidative stress and dysfunction via miR-92a, and that treatment with the PPARγ ligand, pioglitazone, could reverse these derangements. To test these hypotheses, a mouse AM cell line, MH-S cells, was exposed to ethanol in vitro, and primary AMs were isolated from a mouse model of chronic ethanol consumption to measure Nox4, mitochondrial target mRNA (qRT-PCR) and protein levels (confocal microscopy), mitochondria-derived reactive oxygen species (confocal immunofluorescence), mitochondrial fission (electron microscopy), and mitochondrial bioenergetics (extracellular flux analyzer). Ethanol exposure increased Nox4, enhanced mitochondria-derived oxidative stress, augmented mitochondrial fission, and impaired mitochondrial bioenergetics. Transfection with a miR-92a mimic in vitro or pioglitazone treatment in vivo diminished Nox4 levels, resulting in improvements in these ethanol-mediated derangements. These findings demonstrate that pioglitazone may provide a novel therapeutic approach to mitigate ethanol-induced AM mitochondrial derangements.


Asunto(s)
Etanol , Macrófagos Alveolares/patología , NADPH Oxidasa 4/metabolismo , Animales , Línea Celular , Etanol/toxicidad , Macrófagos Alveolares/metabolismo , Ratones , NADPH Oxidasa 4/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
20.
Alcohol ; 87: 89-95, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32353591

RESUMEN

On November 15, 2019, the 24th annual Alcohol and Immunology Research Interest Group (AIRIG) meeting was held as a satellite conference during the annual Society for Leukocyte Biology meeting in Boston, Massachusetts. The 2019 meeting focused on alcohol, immunity, and organ damage, and included two plenary sessions. The first session highlighted new research exploring the mechanisms of alcohol-induced inflammation and liver disease, including effects on lipidomics and lipophagy, regulatory T cells, epigenetics, epithelial cells, and age-related changes in the gut. The second session covered alcohol-induced injury of other organs, encompassing diverse areas of research ranging from neurodegeneration, to lung barrier function, to colon carcinogenesis, to effects on viral infection. The discussions also highlighted current laboratory and clinical research used to identify biomarkers of alcohol use and disease.


Asunto(s)
Consumo de Bebidas Alcohólicas , Consumo de Bebidas Alcohólicas/efectos adversos , Alcoholismo/diagnóstico , Biomarcadores , Boston , Congresos como Asunto , Etanol/toxicidad , Humanos , Inflamación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA