Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
EMBO Rep ; 24(11): e57571, 2023 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-37795769

RESUMEN

The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.


Asunto(s)
Candida albicans , Trampas Extracelulares , Candida albicans/metabolismo , Trampas Extracelulares/metabolismo , Calcio/metabolismo , Proteínas Fúngicas/metabolismo
2.
PLoS Pathog ; 14(5): e1007013, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29727465

RESUMEN

Nutritional immunity describes the host-driven manipulation of essential micronutrients, including iron, zinc and manganese. To withstand nutritional immunity and proliferate within their hosts, pathogenic microbes must express efficient micronutrient uptake and homeostatic systems. Here we have elucidated the pathway of cellular zinc assimilation in the major human fungal pathogen Candida albicans. Bioinformatics analysis identified nine putative zinc transporters: four cytoplasmic-import Zip proteins (Zrt1, Zrt2, Zrt3 and orf19.5428) and five cytoplasmic-export ZnT proteins (orf19.1536/Zrc1, orf19.3874, orf19.3769, orf19.3132 and orf19.52). Only Zrt1 and Zrt2 are predicted to localise to the plasma membrane and here we demonstrate that Zrt2 is essential for C. albicans zinc uptake and growth at acidic pH. In contrast, ZRT1 expression was found to be highly pH-dependent and could support growth of the ZRT2-null strain at pH 7 and above. This regulatory paradigm is analogous to the distantly related pathogenic mould, Aspergillus fumigatus, suggesting that pH-adaptation of zinc transport may be conserved in fungi and we propose that environmental pH has shaped the evolution of zinc import systems in fungi. Deletion of C. albicans ZRT2 reduced kidney fungal burden in wild type, but not in mice lacking the zinc-chelating antimicrobial protein calprotectin. Inhibition of zrt2Δ growth by neutrophil extracellular traps was calprotectin-dependent. This suggests that, within the kidney, C. albicans growth is determined by pathogen-Zrt2 and host-calprotectin. As well as serving as an essential micronutrient, zinc can also be highly toxic and we show that C. albicans deals with this potential threat by rapidly compartmentalising zinc within vesicular stores called zincosomes. In order to understand mechanistically how this process occurs, we created deletion mutants of all five ZnT-type transporters in C. albicans. Here we show that, unlike in Saccharomyces cerevisiae, C. albicans Zrc1 mediates zinc tolerance via zincosomal zinc compartmentalisation. This novel transporter was also essential for virulence and liver colonisation in vivo. In summary, we show that zinc homeostasis in a major human fungal pathogen is a multi-stage process initiated by Zrt1/Zrt2-cellular import, followed by Zrc1-dependent intracellular compartmentalisation.


Asunto(s)
Candida albicans/metabolismo , Candida albicans/patogenicidad , Zinc/metabolismo , Adaptación Fisiológica , Animales , Péptidos Catiónicos Antimicrobianos/genética , Péptidos Catiónicos Antimicrobianos/metabolismo , Calgranulina B/genética , Calgranulina B/metabolismo , Candida albicans/genética , Candidiasis Invasiva/metabolismo , Candidiasis Invasiva/microbiología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Compartimento Celular , Femenino , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genes Fúngicos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/fisiología , Humanos , Concentración de Iones de Hidrógeno , Complejo de Antígeno L1 de Leucocito/genética , Complejo de Antígeno L1 de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Virulencia/genética , Virulencia/fisiología , Zinc/toxicidad
3.
J Mol Biol ; 393(2): 504-13, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19695264

RESUMEN

Glutamine synthetase (GS, EC 6.3.1.2; also known as gamma-glutamyl:ammonia ligase) catalyzes the ATP-dependent condensation of glutamate and ammonia to form glutamine. The enzyme has essential roles in different tissues and species, which have led to its consideration as a drug or an herbicide target. In this article, we describe studies aimed at the discovery of new antimicrobial agents targeting Mycobacterium tuberculosis, the causative pathogen of tuberculosis. A number of distinct classes of GS inhibitors with an IC(50) of micromolar value or better were identified via high-throughput screening. A commercially available purine analogue similar to one of the clusters identified (the diketopurines), 1-[(3,4-dichlorophenyl)methyl]-3,7-dimethyl-8-morpholin-4-yl-purine-2,6-dione, was also shown to inhibit the enzyme, with a measured IC(50) of 2.5+/-0.4 microM. Two X-ray structures are presented: one is a complex of the enzyme with the purine analogue alone (2.55-A resolution), and the other includes the compound together with methionine sulfoximine phosphate, magnesium and phosphate (2.2-A resolution). The former represents a relaxed, inactive conformation of the enzyme, while the latter is a taut, active one. These structures show that the compound binds at the same position in the nucleotide site, regardless of the conformational state. The ATP-binding site of the human enzyme differs substantially, explaining why it has an approximately 60-fold lower affinity for this compound than the bacterial GS. As part of this work, we devised a new synthetic procedure for generating l-(SR)-methionine sulfoximine phosphate from l-(SR)-methionine sulfoximine, which will facilitate future investigations of novel GS inhibitors.


Asunto(s)
Antituberculosos/farmacología , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Mycobacterium tuberculosis/enzimología , Purinas/farmacología , Adenosina Trifosfato/metabolismo , Antituberculosos/química , Sitios de Unión , Cristalografía por Rayos X , Unión Proteica , Purinas/química , Purinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...