Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 954, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38296937

RESUMEN

Chronic wounds are often infected with biofilm bacteria and characterized by high oxidative stress. Current dressings that promote chronic wound healing either require additional processes such as photothermal irradiation or leave behind gross amounts of undesirable residues. We report a dual-functionality hydrogel dressing with intrinsic antibiofilm and antioxidative properties that are synergistic and low-leaching. The hydrogel is a crosslinked network with tethered antibacterial cationic polyimidazolium and antioxidative N-acetylcysteine. In a murine diabetic wound model, the hydrogel accelerates the closure of wounds infected with methicillin-resistant Staphylococcus aureus or carbapenem-resistant Pseudomonas aeruginosa biofilm. Furthermore, a three-dimensional ex vivo human skin equivalent model shows that N-acetylcysteine promotes the keratinocyte differentiation and accelerates the re-epithelialization process. Our hydrogel dressing can be made into different formats for the healing of both flat and deep infected chronic wounds without contamination of the wound or needing other modalities such as photothermal irradiation.


Asunto(s)
Sordera , Diabetes Mellitus , Staphylococcus aureus Resistente a Meticilina , Infección de Heridas , Humanos , Animales , Ratones , Antioxidantes/farmacología , Acetilcisteína/farmacología , Hidrogeles/farmacología , Cicatrización de Heridas , Vendajes , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Biopelículas , Infección de Heridas/tratamiento farmacológico
2.
ACS Appl Mater Interfaces ; 10(24): 20356-20367, 2018 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-29806938

RESUMEN

Multidrug resistance and the refractory character of bacterial biofilms are among the most difficult challenges in infection treatment. Current antimicrobial strategies typically are much more effective for prevention of biofilm formation than for eradication of established biofilms; these strategies also leave dead bacteria and endotoxin in the infection site, which impairs healing. We report a novel hydrogel that eradicates biofilm bacteria by non-leaching-based debridement followed by ex situ contact-killing (DESCK) away from the infection site. The debridement effect is likely due to the high water swellability and microporosity of the cross-linked network which is made from polyethylene glycol dimethacrylate tethered with a dangling polyethylenimine (PEI) star copolymer. The large pore size of the hydrogel makes the cationic pore walls highly accessible to bacteria. The hydrogel also degrades in the presence of infection cells, releasing star cationic PEI into the infection site to contact-kill bacteria remaining there. DESCK hydrogel effectively kills (>99.9% reduction) biofilms of methicillin-resistant Staphylococcus aureus (MRSA) and carbapenem-resistant Pseudomonas aeruginosa (CR-PA) and Acinetobacter baumannii in a murine excisional wound infection model. Silver-based wound dressings (controls) showed almost no killing of CR-PA and MRSA biofilms. This DESCK hydrogel greatly reduces the bioburden and inflammation and promotes wound healing. It has great potential for diverse infection treatment applications.


Asunto(s)
Biopelículas , Animales , Antibacterianos , Desbridamiento , Farmacorresistencia Bacteriana , Resistencia a Múltiples Medicamentos , Hidrogeles , Staphylococcus aureus Resistente a Meticilina , Ratones , Pseudomonas aeruginosa , Infección de Heridas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...