Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Diabetes Metab Res Rev ; 40(5): e3829, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850100

RESUMEN

AIMS: Pancreatic polypeptide (PP) is elevated in people with vascular risk factors such as type 2 diabetes or increased visceral fat. We investigated potential relationships between PP and microvascular and macrovascular complications of diabetes. MATERIALS AND METHODS: Animal study: Subcutaneous PP infusion for 4 weeks in high fat diet mouse model. Retinal mRNA submitted for Ingenuity Pathway Analysis. Human study: fasting PP measured in 1478 participants and vascular complications recorded over median 5.5 (IQR 4.9-5.8) years follow-up. RESULTS: Animal study: The retinal transcriptional response to PP was indicative of cellular stress and damage, and this footprint matched responses described in previously published studies of retinal disease. Of mechanistic importance the transcriptional landscape was consistent with upregulation of folliculin, a recently identified susceptibility gene for diabetic retinopathy. Human study: Adjusting for established risk factors, PP was associated with prevalent and incident clinically significant retinopathy (odds ratio (OR) 1.289 (1.107-1.501) p = 0.001; hazard ratio (HR) 1.259 (1.035-1.531) p = 0.0213), albuminuria (OR 1.277 (1.124-1.454), p = 0.0002; HR 1.608 (1.208-2.141) p = 0.0011), and macrovascular disease (OR 1.021 (1.006-1.037) p = 0.0068; HR 1.324 (1.089-1.61), p = 0.0049), in individuals with type 2 diabetes, and progression to diabetes in non-diabetic individuals (HR 1.402 (1.081-1.818), p = 0.0109). CONCLUSIONS: Elevated fasting PP is independently associated with vascular complications of diabetes and affects retinal pathways potentially influencing retinal neuronal survival. Our results suggest possible new roles for PP-fold peptides in the pathophysiology of diabetes complications and vascular risk stratification.


Asunto(s)
Diabetes Mellitus Tipo 2 , Angiopatías Diabéticas , Retinopatía Diabética , Ayuno , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/patología , Humanos , Masculino , Femenino , Persona de Mediana Edad , Angiopatías Diabéticas/etiología , Angiopatías Diabéticas/epidemiología , Animales , Ratones , Estudios de Seguimiento , Retinopatía Diabética/etiología , Retinopatía Diabética/epidemiología , Retinopatía Diabética/patología , Pronóstico , Incidencia , Biomarcadores/análisis , Factores de Riesgo , Anciano
2.
Clin Obes ; 14(3): e12659, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602039

RESUMEN

Nearly 90 clinicians and researchers from around the world attended the first IMPROVE 2022 International Meeting on Pathway-Related Obesity. Delegates attended in person or online from across Europe, Argentina and Israel to hear the latest scientific and clinical developments in hyperphagia and severe, early-onset obesity, and set out a vision of excellence for the future for improving the diagnosis, treatment, and care of patients with melanocortin-4 receptor (MC4R) pathway-related obesity. The meeting co-chair Peter Kühnen, Charité Universitätsmedizin Berlin, Germany, indicated that change was needed with the rapidly increasing prevalence of obesity and the associated complications to improve the understanding of the underlying mechanisms and acknowledge that monogenic forms of obesity can play an important role, providing insights that can be applied to a wider group of patients with obesity. World-leading experts presented the latest research and led discussions on the underlying science of obesity, diagnosis (including clinical and genetic approaches such as the role of defective MC4R signalling), and emerging clinical data and research with targeted pharmacological approaches. The aim of the meeting was to agree on the questions that needed to be addressed in future research and to ensure that optimised diagnostic work-up was used with new genetic testing tools becoming available. This should aid the planning of new evidence-based treatment strategies for the future, as explained by co-chair Martin Wabitsch, Ulm University Medical Center, Germany.


Asunto(s)
Obesidad , Receptor de Melanocortina Tipo 4 , Humanos , Hiperfagia , Obesidad/terapia , Receptor de Melanocortina Tipo 4/genética , Receptor de Melanocortina Tipo 4/metabolismo , Transducción de Señal
3.
Nat Genet ; 56(4): 579-584, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38575728

RESUMEN

Obesity is a major risk factor for many common diseases and has a substantial heritable component. To identify new genetic determinants, we performed exome-sequence analyses for adult body mass index (BMI) in up to 587,027 individuals. We identified rare loss-of-function variants in two genes (BSN and APBA1) with effects substantially larger than those of well-established obesity genes such as MC4R. In contrast to most other obesity-related genes, rare variants in BSN and APBA1 were not associated with normal variation in childhood adiposity. Furthermore, BSN protein-truncating variants (PTVs) magnified the influence of common genetic variants associated with BMI, with a common variant polygenic score exhibiting an effect twice as large in BSN PTV carriers than in noncarriers. Finally, we explored the plasma proteomic signatures of BSN PTV carriers as well as the functional consequences of BSN deletion in human induced pluripotent stem cell-derived hypothalamic neurons. Collectively, our findings implicate degenerative processes in synaptic function in the etiology of adult-onset obesity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Hepatopatías , Proteínas del Tejido Nervioso , Adulto , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Diabetes Mellitus Tipo 2/genética , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Obesidad/complicaciones , Obesidad/genética , Proteómica
4.
Cell Metab ; 36(5): 1076-1087.e4, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653246

RESUMEN

Approximately 1 in 4 people worldwide have non-alcoholic fatty liver disease (NAFLD); however, there are currently no medications to treat this condition. This study investigated the role of adiposity-associated orphan G protein-coupled receptor 75 (GPR75) in liver lipid accumulation. We profiled Gpr75 expression and report that it is most abundant in the brain. Next, we generated the first single-cell-level analysis of Gpr75 and identified a subpopulation co-expressed with key appetite-regulating hypothalamic neurons. CRISPR-Cas9-deleted Gpr75 mice fed a palatable western diet high in fat adjusted caloric intake to remain in energy balance, thereby preventing NAFLD. Consistent with mouse results, analysis of whole-exome sequencing data from 428,719 individuals (UK Biobank) revealed that variants in GPR75 are associated with a reduced likelihood of hepatic steatosis. Here, we provide a significant advance in understanding of the expression and function of GPR75, demonstrating that it is a promising pharmaceutical target for NAFLD treatment.


Asunto(s)
Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico , Receptores Acoplados a Proteínas G , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/genética , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Ratones , Humanos , Masculino , Tejido Adiposo/metabolismo , Ratones Noqueados , Hígado/metabolismo , Femenino , Adiposidad
5.
Nat Metab ; 6(4): 764-777, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38429390

RESUMEN

Surviving long periods without food has shaped human evolution. In ancient and modern societies, prolonged fasting was/is practiced by billions of people globally for religious purposes, used to treat diseases such as epilepsy, and recently gained popularity as weight loss intervention, but we still have a very limited understanding of the systemic adaptions in humans to extreme caloric restriction of different durations. Here we show that a 7-day water-only fast leads to an average weight loss of 5.7 kg (±0.8 kg) among 12 volunteers (5 women, 7 men). We demonstrate nine distinct proteomic response profiles, with systemic changes evident only after 3 days of complete calorie restriction based on in-depth characterization of the temporal trajectories of ~3,000 plasma proteins measured before, daily during, and after fasting. The multi-organ response to complete caloric restriction shows distinct effects of fasting duration and weight loss and is remarkably conserved across volunteers with >1,000 significantly responding proteins. The fasting signature is strongly enriched for extracellular matrix proteins from various body sites, demonstrating profound non-metabolic adaptions, including extreme changes in the brain-specific extracellular matrix protein tenascin-R. Using proteogenomic approaches, we estimate the health consequences for 212 proteins that change during fasting across ~500 outcomes and identified putative beneficial (SWAP70 and rheumatoid arthritis or HYOU1 and heart disease), as well as adverse effects. Our results advance our understanding of prolonged fasting in humans beyond a merely energy-centric adaptions towards a systemic response that can inform targeted therapeutic modulation.


Asunto(s)
Restricción Calórica , Ayuno , Proteoma , Humanos , Proteoma/metabolismo , Femenino , Masculino , Adulto , Pérdida de Peso , Proteómica/métodos , Adaptación Fisiológica
6.
Sci Adv ; 10(10): eadj3823, 2024 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-38446876

RESUMEN

Mutations that perturb leptin-melanocortin signaling are known to cause hyperphagia and obesity, but energy expenditure has not been well studied outside rodents. We report on a common canine mutation in pro-opiomelanocortin (POMC), which prevents production of ß-melanocyte-stimulating hormone (ß-MSH) and ß-endorphin but not α-MSH; humans, similar to dogs, produce α-MSH and ß-MSH from the POMC propeptide, but rodents produce only α-MSH. We show that energy expenditure is markedly lower in affected dogs, which also have increased motivational salience in response to a food cue, indicating increased wanting or hunger. There was no difference in satiety at a modified ad libitum meal or in their hedonic response to food, nor disruption of adrenocorticotropic hormone (ACTH) or thyroid axes. In vitro, we show that ß-MSH signals comparably to α-MSH at melanocortin receptors. These data implicate ß-MSH and ß-endorphin as important in determining hunger and moderating energy expenditure and suggest that this role is independent of the presence of α-MSH.


Asunto(s)
betaendorfina , beta-MSH , Humanos , Perros , Animales , betaendorfina/genética , Metabolismo Basal , Proopiomelanocortina/genética , Hambre , alfa-MSH/genética
7.
Curr Biol ; 34(8): 1646-1656.e4, 2024 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-38518777

RESUMEN

The obesity epidemic is principally driven by the consumption of more calories than the body requires. It is therefore essential that the mechanisms underpinning feeding behavior are defined. Neurons within the brainstem dorsal vagal complex (DVC) receive direct information from the digestive system and project to second-order regions in the brain to regulate food intake. Although γ-aminobutyric acid is expressed in the DVC (GABADVC), its function in this region has not been defined. In order to discover the unique gene expression signature of GABADVC cells, we used single-nucleus RNA sequencing (Nuc-seq), and this revealed 19 separate clusters. We next probed the function of GABADVC cells and discovered that the selective activation of GABADVC neurons significantly controls food intake and body weight. Optogenetic interrogation of GABADVC circuitry identified GABADVC → hypothalamic arcuate nucleus (ARC) projections as appetite suppressive without creating aversion. Electrophysiological analysis revealed that GABADVC → ARC stimulation inhibits hunger-promoting neuropeptide Y (NPY) neurons via GABA release. Adopting an intersectional genetics strategy, we clarify that the GABADVC → ARC circuit curbs food intake. These data identify GABADVC as a new modulator of feeding behavior and body weight and a controller of orexigenic NPY neuron activity, thereby providing insight into the neural underpinnings of obesity.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Tronco Encefálico , Conducta Alimentaria , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/fisiología , Animales , Tronco Encefálico/fisiología , Tronco Encefálico/metabolismo , Ratones , Masculino , Conducta Alimentaria/fisiología , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ingestión de Alimentos/fisiología , Ratones Endogámicos C57BL , Femenino
8.
Mol Metab ; 81: 101895, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38340808

RESUMEN

Peptide YY (PYY3-36) is a post-prandially released gut hormone with potent appetite-reducing activity, the mechanism of action of which is not fully understood. Unravelling how this system physiologically regulates food intake may help unlock its therapeutic potential, whilst minimising unwanted effects. Here we demonstrate that germline and post-natal targeted knockdown of the PYY3-36 preferring receptor (neuropeptide Y (NPY) Y2 receptor (Y2R)) in the afferent vagus nerve is required for the appetite inhibitory effects of physiologically-released PYY3-36, but not peripherally administered pharmacological doses. Post-natal knockdown of the Y2R results in a transient body weight phenotype that is not evident in the germline model. Loss of vagal Y2R signalling also results in altered meal patterning associated with accelerated gastric emptying. These results are important for the design of PYY-based anti-obesity agents.


Asunto(s)
Hormonas Gastrointestinales , Péptido YY , Péptido YY/fisiología , Apetito/fisiología , Nervio Vago , Ingestión de Alimentos
9.
Cell Rep Med ; 4(9): 101187, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37659411

RESUMEN

The long-term clinical outcomes of severe obesity due to leptin signaling deficiency are unknown. We carry out a retrospective cross-sectional investigation of a large cohort of children with leptin (LEP), LEP receptor (LEPR), or melanocortin 4 receptor (MC4R) deficiency (n = 145) to evaluate the progression of the disease. The affected individuals undergo physical, clinical, and metabolic evaluations. We report a very high mortality in children with LEP (26%) or LEPR deficiency (9%), mainly due to severe pulmonary and gastrointestinal infections. In addition, 40% of surviving children with LEP or LEPR deficiency experience life-threatening episodes of lung or gastrointestinal infections. Although precision drugs are currently available for LEP and LEPR deficiencies, as yet, they are not accessible in Pakistan. An appreciation of the severe impact of LEP or LEPR deficiency on morbidity and early mortality, educational attainment, and the attendant stigmatization should spur efforts to deliver the available life-saving drugs to these children as a matter of urgency.


Asunto(s)
Leptina , Obesidad Mórbida , Niño , Humanos , Estudios Transversales , Morbilidad , Estudios Retrospectivos
10.
Cell Metab ; 35(7): 1195-1208.e6, 2023 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-37437545

RESUMEN

Maternal-offspring interactions in mammals involve both cooperation and conflict. The fetus has evolved ways to manipulate maternal physiology to enhance placental nutrient transfer, but the mechanisms involved remain unclear. The imprinted Igf2 gene is highly expressed in murine placental endocrine cells. Here, we show that Igf2 deletion in these cells impairs placental endocrine signaling to the mother, without affecting placental morphology. Igf2 controls placental hormone production, including prolactins, and is crucial to establish pregnancy-related insulin resistance and to partition nutrients to the fetus. Consequently, fetuses lacking placental endocrine Igf2 are growth restricted and hypoglycemic. Mechanistically, Igf2 controls protein synthesis and cellular energy homeostasis, actions dependent on the placental endocrine cell type. Igf2 loss also has additional long-lasting effects on offspring metabolism in adulthood. Our study provides compelling evidence for an intrinsic fetal manipulation system operating in placenta that modifies maternal metabolism and fetal resource allocation, with long-term consequences for offspring metabolic health.


Asunto(s)
Resistencia a la Insulina , Factor II del Crecimiento Similar a la Insulina , Placenta , Animales , Femenino , Ratones , Embarazo , Comunicación Celular , Homeostasis , Hipoglucemiantes , Factor II del Crecimiento Similar a la Insulina/genética , Impresión Genómica
11.
Trends Mol Med ; 29(10): 777-779, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37460364

RESUMEN

Glucagon-like peptide 1 (GLP-1) receptor (GLP-1R) agonists are hugely effective in the treatment of obesity. Originally developed for type 2 diabetes (T2D), these drugs cause dramatic weight loss in people with overweight or obesity, but how do they work, and are these therapeutics the long-sought-after solution to obesity? Here we explain the mechanisms of action of GLP-1R agonists in the context of weight loss and discuss their importance as therapeutics for obesity treatment.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Péptido 1 Similar al Glucagón/uso terapéutico , Obesidad/tratamiento farmacológico , Receptor del Péptido 1 Similar al Glucagón/agonistas , Receptor del Péptido 1 Similar al Glucagón/uso terapéutico , Pérdida de Peso
12.
Nat Commun ; 14(1): 3076, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-37248237

RESUMEN

Coupling the release of pituitary hormones to the developmental stage of the oocyte is essential for female fertility. It requires estrogen to restrain kisspeptin (KISS1)-neuron pulsatility in the arcuate hypothalamic nucleus, while also exerting a surge-like effect on KISS1-neuron activity in the AVPV hypothalamic nucleus. However, a mechanistic basis for this region-specific effect has remained elusive. Our genomic analysis in female mice demonstrate that some processes, such as restraint of KISS1-neuron activity in the arcuate nucleus, may be explained by region-specific estrogen receptor alpha (ERα) DNA binding at gene regulatory regions. Furthermore, we find that the Kiss1-locus is uniquely regulated in these hypothalamic nuclei, and that the nuclear receptor co-repressor NR0B1 (DAX1) restrains its transcription specifically in the arcuate nucleus. These studies provide mechanistic insight into how ERα may control the KISS1-neuron, and Kiss1 gene expression, to couple gonadotropin release to the developmental stage of the oocyte.


Asunto(s)
Receptor Nuclear Huérfano DAX-1 , Receptor alfa de Estrógeno , Hipotálamo , Kisspeptinas , Animales , Femenino , Ratones , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Estrógenos/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Kisspeptinas/metabolismo , Receptor Nuclear Huérfano DAX-1/genética , Receptor Nuclear Huérfano DAX-1/metabolismo
13.
EClinicalMedicine ; 58: 101962, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37090435

RESUMEN

Unlike various countries and organisations, including the World Health Organisation and the European Parliament, the United Kingdom does not formally recognise obesity as a disease. This report presents the discussion on the potential impact of defining obesity as a disease on the patient, the healthcare system, the economy, and the wider society. A group of speakers from a wide range of disciplines came together to debate the topic bringing their knowledge and expertise from backgrounds in medicine, psychology, economics, and politics as well as the experience of people living with obesity. The aim of their debate was not to decide whether obesity should be classified as a disease but rather to explore what the implications of doing so would be, what the gaps in the available data are, as well as to provide up-to-date information on the topic from experts in the field. There were four topics where speakers presented their viewpoints, each one including a question-and-answer section for debate. The first one focused on the impact that the recognition of obesity could have on people living with obesity regarding the change in their behaviour, either positive and empowering or more stigmatising. During the second one, the impact of defining obesity as a disease on the National Health Service and the wider economy was discussed. The primary outcome was the need for more robust data as the one available does not represent the actual cost of obesity. The third topic was related to the policy implications regarding treatment provision, focusing on the public's power to influence policy. Finally, the last issue discussed, included the implications of public health actions, highlighting the importance of the government's actions and private stakeholders. The speakers agreed that no matter where they stand on this debate, the goal is common: to provide a healthcare system that supports and protects the patients, strategies that protect the economy and broader society, and policies that reduce stigma and promote health equity. Many questions are left to be answered regarding how these goals can be achieved. However, this discussion has set a good foundation providing evidence that can be used by the public, clinicians, and policymakers to make that happen.

14.
Diabetes ; 72(9): 1228-1234, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37083980

RESUMEN

We previously demonstrated that 50% of children with obesity from consanguineous families from Pakistan carry pathogenic variants in known monogenic obesity genes. Here, we have discovered a novel monogenetic recessive form of severe childhood obesity using an in-house computational staged approach. The analysis included whole-exome sequencing data of 366 children with severe obesity, 1,000 individuals of the Pakistan Risk of Myocardial Infarction Study (PROMIS) study, and 200,000 participants of the UK Biobank to prioritize genes harboring rare homozygous variants with putative effect on human obesity. We identified five rare or novel homozygous missense mutations predicted deleterious in five consanguineous families in P4HTM encoding prolyl 4-hydroxylase transmembrane (P4H-TM). We further found two additional homozygous missense mutations in children with severe obesity of Indian and Moroccan origin. Molecular dynamics simulation suggested that these mutations destabilized the active conformation of the substrate binding domain. Most carriers also presented with hypotonia, cognitive impairment, and/or developmental delay. Three of the five probands died of pneumonia during the first 2 years of the follow-up. P4HTM deficiency is a novel form of syndromic obesity, affecting 1.5% of our children with obesity associated with high mortality. P4H-TM is a hypoxia-inducible factor that is necessary for survival and adaptation under oxygen deprivation, but the role of this pathway in energy homeostasis and obesity pathophysiology remains to be elucidated.


Asunto(s)
Obesidad Mórbida , Obesidad Infantil , Humanos , Niño , Obesidad Mórbida/genética , Obesidad Infantil/genética , Mutación , Homocigoto , Mutación Missense , Linaje
15.
Nat Commun ; 14(1): 1450, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36922513

RESUMEN

Disruption of brain-expressed G protein-coupled receptor-10 (GPR10) causes obesity in animals. Here, we identify multiple rare variants in GPR10 in people with severe obesity and in normal weight controls. These variants impair ligand binding and G protein-dependent signalling in cells. Transgenic mice harbouring a loss of function GPR10 variant found in an individual with obesity, gain excessive weight due to decreased energy expenditure rather than increased food intake. This evidence supports a role for GPR10 in human energy homeostasis. Therapeutic targeting of GPR10 may represent an effective weight-loss strategy.


Asunto(s)
Obesidad , Receptores Acoplados a Proteínas G , Animales , Humanos , Ratones , Metabolismo Energético , Ratones Transgénicos , Obesidad/genética , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Aumento de Peso/genética
16.
Cell Rep ; 42(2): 112023, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36729835

RESUMEN

At the moment of union in fertilization, sperm and oocyte are transcriptionally silent. The ensuing onset of embryonic transcription (embryonic genome activation [EGA]) is critical for development, yet its timing and profile remain elusive in any vertebrate species. We here dissect transcription during EGA by high-resolution single-cell RNA sequencing of precisely synchronized mouse one-cell embryos. This reveals a program of embryonic gene expression (immediate EGA [iEGA]) initiating within 4 h of fertilization. Expression during iEGA produces canonically spliced transcripts, occurs substantially from the maternal genome, and is mostly downregulated at the two-cell stage. Transcribed genes predict regulation by transcription factors (TFs) associated with cancer, including c-Myc. Blocking c-Myc or other predicted regulatory TF activities disrupts iEGA and induces acute developmental arrest. These findings illuminate intracellular mechanisms that regulate the onset of mammalian development and hold promise for the study of cancer.


Asunto(s)
Embrión de Mamíferos , Perfilación de la Expresión Génica , Masculino , Animales , Ratones , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Semen , Expresión Génica , Desarrollo Embrionario/genética , Mamíferos/genética
17.
Mol Metab ; 68: 101665, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36592795

RESUMEN

OBJECTIVE: Overweight and obesity are endemic in developed countries, with a substantial negative impact on human health. Medications developed to treat obesity include agonists for the G-protein coupled receptors glucagon-like peptide-1 (GLP-1R; e.g. liraglutide), serotonin 2C (5-HT2CR; e.g, lorcaserin), and melanocortin4 (MC4R) which reduce body weight primarily by suppressing food intake. However, the mechanisms underlying the therapeutic food intake suppressive effects are still being defined and were investigated here. METHODS: We profiled PPG neurons in the nucleus of the solitary tract (PPGNTS) using single nucleus RNA sequencing (Nuc-Seq) and histochemistry. We next examined the requirement of PPGNTS neurons for obesity medication effects on food intake by virally ablating PPGNTS neurons. Finally, we assessed the effects on food intake of the combination of liraglutide and lorcaserin. RESULTS: We found that 5-HT2CRs, but not GLP-1Rs or MC4Rs, were widespread in PPGNTS clusters and that lorcaserin significantly activated PPGNTS neurons. Accordingly, ablation of PPGNTS neurons prevented the reduction of food intake by lorcaserin but not MC4R agonist melanotan-II, demonstrating the functional significance of PPGNTS 5-HT2CR expression. Finally, the combination of lorcaserin with GLP-1R agonists liraglutide or exendin-4 produced greater food intake reduction as compared to either monotherapy. CONCLUSIONS: These findings identify a necessary mechanism through which obesity medication lorcaserin produces its therapeutic benefit, namely brainstem PPGNTS neurons. Moreover, these data reveal a strategy to augment the therapeutic profile of the current frontline treatment for obesity, GLP-1R agonists, via coadministration with 5-HT2CR agonists.


Asunto(s)
Péptido 1 Similar al Glucagón , Liraglutida , Humanos , Péptido 1 Similar al Glucagón/farmacología , Péptido 1 Similar al Glucagón/metabolismo , Liraglutida/farmacología , Liraglutida/uso terapéutico , Receptor del Péptido 1 Similar al Glucagón/metabolismo , Serotonina/metabolismo , Apetito , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Núcleo Solitario/metabolismo , Ingestión de Alimentos , Neuronas/metabolismo
18.
Trends Cell Biol ; 33(5): 365-373, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36182534

RESUMEN

Gamete (sperm and oocyte) genomes are transcriptionally silent until embryonic genome activation (EGA) following fertilization. EGA in humans had been thought to occur around the eight-cell stage, but recent findings suggest that it is triggered in one-cell embryos, by fertilization. Phosphorylation and other post-translational modifications during fertilization may instate transcriptionally favorable chromatin and activate oocyte-derived transcription factors (TFs) to initiate EGA. Expressed genes lay on cancer-associated pathways and their identities predict upregulation by MYC and other cancer-associated TFs. One interpretation of this is that the onset of EGA, and the somatic cell trajectory to cancer, are mechanistically related: cancer initiates epigenetically. We describe how fertilization might be linked to the initiation of EGA and involve distinctive processes recapitulated in cancer.


Asunto(s)
Embrión de Mamíferos , Semen , Animales , Masculino , Humanos , Semen/metabolismo , Embrión de Mamíferos/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Genoma , Activación Transcripcional , Desarrollo Embrionario/genética , Regulación del Desarrollo de la Expresión Génica/genética , Mamíferos/genética , Mamíferos/metabolismo
19.
Nat Metab ; 4(10): 1402-1419, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36266547

RESUMEN

The hypothalamus plays a key role in coordinating fundamental body functions. Despite recent progress in single-cell technologies, a unified catalog and molecular characterization of the heterogeneous cell types and, specifically, neuronal subtypes in this brain region are still lacking. Here, we present an integrated reference atlas, 'HypoMap,' of the murine hypothalamus, consisting of 384,925 cells, with the ability to incorporate new additional experiments. We validate HypoMap by comparing data collected from Smart-Seq+Fluidigm C1 and bulk RNA sequencing of selected neuronal cell types with different degrees of cellular heterogeneity. Finally, via HypoMap, we identify classes of neurons expressing glucagon-like peptide-1 receptor (Glp1r) and prepronociceptin (Pnoc), and validate them using single-molecule in situ hybridization. Collectively, HypoMap provides a unified framework for the systematic functional annotation of murine hypothalamic cell types, and it can serve as an important platform to unravel the functional organization of hypothalamic neurocircuits and to identify druggable targets for treating metabolic disorders.


Asunto(s)
Receptor del Péptido 1 Similar al Glucagón , Hipotálamo , Ratones , Animales , Receptor del Péptido 1 Similar al Glucagón/genética , Hipotálamo/metabolismo , Neuronas/metabolismo , Análisis de Secuencia de ARN , Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...