Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Small ; 19(5): e2205229, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36449654

RESUMEN

III-Nitride semiconductor-based quantum dots (QDs) play an essential role in solid-state quantum light sources because of their potential for room-temperature operation. However, undesired background emission from the surroundings deteriorates single-photon purity. Moreover, spectral diffusion causes inhomogeneous broadening and limits the applications of QDs in quantum photonic technologies. To overcome these obstacles, it is demonstrated that directly pumping carriers to the excited state of the QD reduces the number of carriers generated in the vicinities. The polarization-controlled quasi-resonant excitation is applied to InGaN QDs embedded in GaN nanowire. To analyze the different excitation mechanisms, polarization-resolved absorptions are investigated under the above-barrier bandgap, below-barrier bandgap, and quasi-resonant excitation conditions. By employing polarization-controlled quasi-resonant excitation, the linewidth is reduced from 353 to 272 µeV, and the second-order correlation value is improved from 0.470 to 0.231. Therefore, a greater single-photon purity can be obtained at higher temperatures due to decreased linewidth and background emission.

2.
ACS Nano ; 15(7): 11317-11325, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34165277

RESUMEN

Epitaxially grown quantum dots (QDs), especially embedded in photonic structures, play an essential role in various quantum photonic systems as on-demand single-photon sources. However, these QDs often suffer from adjacent unwanted emitters, which contribute to the background noise of the QD emission and fundamentally limit the single-photon purity. In this paper, a nanoscale focus pinspot (NFP) technique using focused-ion-beam-induced luminescence quenching enables us to improve single-photon purity from site-controlled QD as a proof-of-concept experiment. The optical quality of the QD emission is not degraded while the signal-to-noise ratio of the QD is improved. Moreover, the QD after the NFP technique reveals the single-photon nature at further elevated temperatures owing to the reduced background noise. As the NFP technique is nondestructive, it retains the apparent physical structures and photonic functions, thereby indicating its promising potential for applying diverse high-purity quantum emitters, particularly integrated in photonic devices and circuits.

3.
Sci Rep ; 10(1): 15371, 2020 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958784

RESUMEN

Optical polarization is an indispensable component in photonic applications, the orthogonality of which extends the degree of freedom of information, and strongly polarized and highly efficient small-size emitters are essential for compact polarization-based devices. We propose a group III-nitride quantum wire for a highly-efficient, strongly-polarized emitter, the polarization anisotropy of which stems solely from its one-dimensionality. We fabricated a site-selective and size-controlled single quantum wire using the geometrical shape of a three-dimensional structure under a self-limited growth mechanism. We present a strong and robust optical polarization anisotropy at room temperature emerging from a group III-nitride single quantum wire. Based on polarization-resolved spectroscopy and strain-included 6-band k·p calculations, the strong anisotropy is mainly attributed to the anisotropic strain distribution caused by the one-dimensionality, and its robustness to temperature is associated with an asymmetric quantum confinement effect.

4.
Nano Lett ; 20(12): 8461-8468, 2020 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-32910661

RESUMEN

Controlling the in-plane symmetry of wide-bandgap semiconductor quantum dots (QDs) is essential for room temperature quantum photonic applications using polarization entangled photon pairs. Herein, we report the formation of 3-fold symmetric group III-nitride QDs at the apex of a triangular pyramid via a self-limited growth mechanism. We employed the in-plane rotational symmetry of the c-plane of a Wurtzite crystal and the large built-in piezoelectric field to reduce fine-structure splitting. The QDs exhibit emission that is distinguishable from that of sidewall quantum wells, and the biexciton-exciton cascade possesses a single-photon nature. We observed the relatively low optical polarization anisotropy and small fine structure splitting under the measurement limit (270 µeV) with the 3-fold symmetric QD. In contrast with current strategies that consider group III-nitride QDs as strongly polarized single-photon emitters, our approach for controlling the QD symmetry provides a new perspective on such QDs, as polarization-entangled photon pairs.

5.
Nanoscale Adv ; 2(4): 1449-1455, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132295

RESUMEN

Group III-nitride semiconductor-based ultraviolet (UV) light emitting diodes have been suggested as a substitute for conventional arc-lamps such as mercury, xenon and deuterium arc-lamps, since they are compact, efficient and have a long lifetime. However, in previously reported studies, group III-nitride UV light emitting diodes did not show a broad UV spectrum range as conventional arc-lamps, which restricts their application in fields such as medical therapy and UV spectrophotometry. Here, we propose GaN quantum dots (QDs) grown on different facets of hexagonal truncated pyramid structures formed on a conventional (0001) sapphire substrate. A hexagonal truncated GaN pyramid structure includes {101̄1} semipolar facets as well as a (0001) polar facet, which have intrinsically different piezoelectric fields and growth rates of GaN QDs. Consequently, we successfully demonstrated a plateau-like broadband UV spectrum ranging from ∼400 nm (UV-A) to ∼270 nm (UV-C) from the GaN QDs. In addition, at the top-edge of the truncated pyramid structure, a strain was locally suppressed compared to the center of the truncated pyramid structure. As a result, various emission wavelengths in the UV range were achieved from the GaN QDs grown on the sidewall, top-edge and top-center of hexagonal truncated pyramid structures, which ultimately provide a broadband UV spectrum with high efficiency.

6.
Nanoscale ; 10(10): 4686-4695, 2018 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-29393959

RESUMEN

Warm and natural white light (i.e., with a correlated colour temperature <5000 K) with good colour rendition (i.e., a colour rendering index >75) is in demand as an indoor lighting source of comfortable interior lighting and mood lighting. However, for warm white light, phosphor-converted white light-emitting diodes (WLEDs) require a red phosphor instead of a commercial yellow phosphor (YAG:Ce3+), and suffer from limitations such as unavoidable energy conversion losses, degraded phosphors and high manufacturing costs. Phosphor-free WLEDs based on three-dimensional (3D) indium gallium nitride (InGaN)/gallium nitride (GaN) structures are promising alternatives. Here, we propose a new concept for highly efficient phosphor-free warm WLEDs using 3D core-shell InGaN/GaN dodecagonal ring structures, fabricated by selective area growth and the KOH wet etching method. Electrically driven, phosphor-free warm WLEDs were successfully demonstrated with a low correlated colour temperature (4500 K) and high colour rendering index (Ra = 81). From our findings, we believe that WLEDs based on dodecagonal ring structures become a platform enabling a high-efficiency warm white light-emitting source without the use of phosphors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA