Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 80(2): 219-233, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31551365

RESUMEN

ZFP36L1 is a tandem zinc-finger RNA-binding protein that recognizes conserved adenylate-uridylate-rich elements (ARE) located in 3'untranslated regions (UTR) to mediate mRNA decay. We hypothesized that ZFP36L1 is a negative regulator of a posttranscriptional hub involved in mRNA half-life regulation of cancer-related transcripts. Analysis of in silico data revealed that ZFP36L1 was significantly mutated, epigenetically silenced, and downregulated in a variety of cancers. Forced expression of ZFP36L1 in cancer cells markedly reduced cell proliferation in vitro and in vivo, whereas silencing of ZFP36L1 enhanced tumor cell growth. To identify direct downstream targets of ZFP36L1, systematic screening using RNA pull-down of wild-type and mutant ZFP36L1 as well as whole transcriptome sequencing of bladder cancer cells {plus minus} tet-on ZFP36L1 was performed. A network of 1,410 genes was identified as potential direct targets of ZFP36L1. These targets included a number of key oncogenic transcripts such as HIF1A, CCND1, and E2F1. ZFP36L1 specifically bound to the 3'UTRs of these targets for mRNA degradation, thus suppressing their expression. Dual luciferase reporter assays and RNA electrophoretic mobility shift assays showed that wild-type, but not zinc-finger mutant ZFP36L1, bound to HIF1A 3'UTR and mediated HIF1A mRNA degradation, leading to reduced expression of HIF1A and its downstream targets. Collectively, our findings reveal an indispensable role of ZFP36L1 as a posttranscriptional safeguard against aberrant hypoxic signaling and abnormal cell-cycle progression. SIGNIFICANCE: RNA-binding protein ZFP36L1 functions as a tumor suppressor by regulating the mRNA stability of a number of mRNAs involved in hypoxia and cell-cycle signaling.


Asunto(s)
Neoplasias de la Mama/genética , Factor 1 de Respuesta al Butirato/metabolismo , Regulación Neoplásica de la Expresión Génica , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias de la Vejiga Urinaria/genética , Regiones no Traducidas 3'/genética , Animales , Neoplasias de la Mama/mortalidad , Neoplasias de la Mama/patología , Factor 1 de Respuesta al Butirato/genética , Carcinogénesis/genética , Ciclo Celular/genética , Hipoxia de la Célula/genética , Línea Celular Tumoral , Ciclina D1/genética , Factor de Transcripción E2F1/genética , Epigénesis Genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mutación , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Neoplasias de la Vejiga Urinaria/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Dedos de Zinc/genética
2.
Cancers (Basel) ; 11(6)2019 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-31213005

RESUMEN

: F-box/WD repeat-containing protein 5 (FBXW5) is a member of the FBXW subclass of F-box proteins. Despite its known function as a component of the Skp1-Cullin-F-box (SCF) ubiquitin ligase complex, the role of FBXW5 in gastric cancer tumorigenesis and metastasis has not been investigated. The present study investigates the role of FBXW5 in tumorigenesis and metastasis, as well as the regulation of key signaling pathways in gastric cancer; using in-vitro FBXW5 knockdown/overexpression cell line and in-vivo models. In-vitro knockdown of FBXW5 results in a decrease in cell proliferation and cell cycle progression, with a concomitant increase in cell apoptosis and caspase-3 activity. Furthermore, knockdown of FBXW5 also leads to a down regulation in cell migration and adhesion, characterized by a reduction in actin polymerization, focal adhesion turnover and traction forces. This study also delineates the mechanistic role of FBXW5 in oncogenic signaling as its inhibition down regulates RhoA-ROCK 1 (Rho-associated protein kinase 1) and focal adhesion kinase (FAK) signaling cascades. Overexpression of FBXW5 promotes in-vivo tumor growth, whereas its inhibition down regulates in-vivo tumor metastasis. When considered together, our study identifies the novel oncogenic role of FBXW5 in gastric cancer and draws further interest regarding its clinical utility as a potential therapeutic target.

3.
Sci Rep ; 8(1): 12248, 2018 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115935

RESUMEN

Exportin-1 (XPO1) controls the nucleo-cytoplasmic trafficking of several key growth regulatory and tumor suppressor proteins. Nuclear export blockade through XPO1 inhibition is a target for therapeutic inhibition in many cancers. Studies have suggested XPO1 upregulation as an indicator of poor prognosis in gastric cancer. In the current study, we investigated the anti-tumor efficacy of selective inhibitors of nuclear export (SINE) compounds KPT-185, KTP-276 and clinical stage selinexor (KPT-330) in gastric cancer. XPO1 was found to be overexpressed in gastric cancer as compared to adjacent normal tissues and was correlated with poor survival outcomes. Among the 3 SINE compounds, in vitro targeting of XPO1 with selinexor resulted in greatest potency with significant anti-proliferative effects at nano molar concentrations. XPO1 inhibition by selinexor resulted in nuclear accumulation of p53, causing cell cycle arrest and apoptosis. Also, inhibition of XPO1 lead to the cytoplasmic retention of p21 and suppression of survivin. Orally administered selienxor caused significant inhibition of tumor growth in xenograft models of gastric cancer. Furthermore, combination of selinexor with irinotecan exhibited greater anti-tumor effect compared to individual treatment. Taken together, our study underscores the therapeutic utility of XPO1 targeting in gastric cancer and suggests the potential benefits of XPO1 inhibition in-combination with chemotherapy.


Asunto(s)
Antineoplásicos/farmacología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Hidrazinas/farmacología , Neoplasias Gástricas/patología , Triazoles/farmacología , Proteína p53 Supresora de Tumor/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Adulto , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Masculino , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Mol Cancer Ther ; 15(12): 3087-3096, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27638859

RESUMEN

Identification of synthetically lethal cellular targets and synergistic drug combinations is important in cancer chemotherapy as they help to overcome treatment resistance and increase efficacy. The Ataxia Telangiectasia Mutated (ATM) kinase is a nuclear protein that plays a major role in the initiation of DNA repair signaling and cell-cycle check points during DNA damage. Although ATM was shown to be associated with poor prognosis in gastric cancer, its implications as a predictive biomarker for cancer chemotherapy remain unexplored. The present study evaluated ATM-induced synthetic lethality and its role in sensitization of gastric cancer cells to PARP and TOP1 inhibitors, veliparib (ABT-888) and irinotecan (CPT-11), respectively. ATM expression was detected in a panel of gastric cell lines, and the IC50 against each inhibitors was determined. The combinatorial effect of ABT-888 and CPT-11 in gastric cancer cells was also determined both in vitro and in vivo ATM deficiency was found to be associated with enhanced sensitivity to ABT-888 and CPT-11 monotherapy, hence suggesting a mechanism of synthetic lethality. Cells with high ATM expression showed reduced sensitivity to monotherapy; however, they showed a higher therapeutic effect with ABT-888 and CPT-11 combinatorial therapy. Furthermore, ATM expression was shown to play a major role in cellular homeostasis by regulating cell-cycle progression and apoptosis in a P53-independent manner. The present study highlights the clinical utility of ATM expression as a predictive marker for sensitivity of gastric cancer cells to PARP and TOP1 inhibition and provides a deeper mechanistic insight into ATM-dependent regulation of cellular processes. Mol Cancer Ther; 15(12); 3087-96. ©2016 AACR.


Asunto(s)
Apoptosis , Proteínas de la Ataxia Telangiectasia Mutada/genética , Bencimidazoles/farmacología , Camptotecina/análogos & derivados , Ciclo Celular , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Camptotecina/farmacología , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos/genética , Sinergismo Farmacológico , Expresión Génica , Histonas/metabolismo , Humanos , Concentración 50 Inhibidora , Irinotecán , Proteína Oncogénica p21(ras)/genética , Proteína Oncogénica p21(ras)/metabolismo , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Cell Oncol (Dordr) ; 39(2): 175-86, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26868260

RESUMEN

BACKGROUND: Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS: Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS: Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS: From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Proteínas de Neoplasias/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Antígenos de Neoplasias/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Metilación de ADN/efectos de los fármacos , Metilación de ADN/genética , Docetaxel , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Silenciador del Gen/efectos de los fármacos , Humanos , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas , Estrés Fisiológico/efectos de los fármacos , Análisis de Supervivencia , Taxoides/farmacología , Ensayo de Tumor de Célula Madre
6.
J Immunol Res ; 2015: 308574, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26579545

RESUMEN

In cancer biology, cells and molecules that form the fundamental components of the tumor microenvironment play a major role in tumor initiation, and progression as well as responses to therapy. Therapeutic approaches that would enable and harness the immune system to target tumor cells mark the future of anticancer therapy as it could induce an immunological memory specific to the tumor type and further enhance tumor regression and relapse-free survival in cancer patients. Gastric cancer is one of the leading causes of cancer-related mortalities that has a modest survival benefit from existing treatment options. The advent of immunotherapy presents us with new approaches in gastric cancer treatment where adaptive cell therapies, cancer vaccines, and antibody therapies have all been used with promising outcomes. In this paper, we review the current advances and prospects in the gastric cancer immunotherapy. Special focus is laid on new strategies and clinical trials that attempt to enhance the efficacy of various immunotherapeutic modalities in gastric cancer.


Asunto(s)
Fenómenos del Sistema Inmunológico , Inmunoterapia/métodos , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/terapia , Vacunas contra el Cáncer/inmunología , Ensayos Clínicos como Asunto , Humanos , Memoria Inmunológica , Monitorización Inmunológica , Microambiente Tumoral
7.
BMC Cancer ; 15: 550, 2015 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-26209226

RESUMEN

BACKGROUND: Platinum based therapy is commonly used in the treatment of advanced gastric cancer. However, resistance to chemotherapy is a major challenge that causes marked variation in individual response rate and survival rate. In this study, we aimed to identify the expression of GTSE1 and its correlation with cisplatin resistance in gastric cancer cells. METHODS: Methylation profiling was carried out in tissue samples from gastric cancer patients before undergoing neoadjuvent therapy using docetaxel, cisplatin and 5FU (DCX) and in gastric cancer cell lines. The correlation between GTSE1 expression and methylation in gastric cancer cells was determined by RT-PCR and MSP respectively. GTSE1 expression was knocked-down using shRNA's and its effects on cisplatin cytotoxicity and cell survival were detected by MTS, proliferation and clonogenic survival assays. Additionally, the effect of GTSE1 knock down in drug induced apoptosis was determined by western blotting and apoptosis assays. RESULTS: GTSE1 exhibited a differential methylation index in gastric cancer patients and in cell lines that correlated with DCX treatment response and cisplatin sensitivity, respectively. In-vitro, GTSE1 expression showed a direct correlation with hypomethylation. Interestingly, Cisplatin treatment induced a dose dependent up regulation as well as nuclear translocation of GTSE1 expression in gastric cancer cells. Knock down of GTSE1 enhanced cisplatin cytotoxity and led to a significant reduction in cell proliferation and clonogenic survival. Also, loss of GTSE1 expression caused a significant increase in P53 mediated apoptosis in cisplatin treated cells. CONCLUSION: Our study identifies GTSE1 as a biomarker for cisplatin resistance in gastric cancer cells. This study also suggests the repressive role of GTSE1 in cisplatin induced apoptosis and signifies its potential utility as a therapeutic target for better clinical management of gastric cancer patients.


Asunto(s)
Antineoplásicos/administración & dosificación , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Neoplasias Gástricas/tratamiento farmacológico , Adulto , Anciano , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cisplatino/farmacología , Metilación de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...