RESUMEN
17ß-estradiol, the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo brain 18F-fluoroestradiol (18F-FES) Positron Emission Tomography (PET) study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age, plasma estradiol and sex hormone binding globulin, and were highly consistent, correctly classifying all women as being postmenopausal or premenopausal. Higher ER density in target regions was associated with poorer memory performance for both postmenopausal and perimenopausal groups, and predicted presence of self-reported mood and cognitive symptoms after menopause. These findings provide novel insights on brain ER density modulation by female neuroendocrine aging, with clinical implications for women's health.
Asunto(s)
Envejecimiento , Encéfalo , Cognición , Tomografía de Emisión de Positrones , Receptores de Estrógenos , Humanos , Femenino , Persona de Mediana Edad , Cognición/fisiología , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Envejecimiento/metabolismo , Receptores de Estrógenos/metabolismo , Adulto , Estradiol/sangre , Estradiol/metabolismo , Sistemas Neurosecretores/metabolismo , Menopausia/metabolismoRESUMEN
17ß-estradiol,the most biologically active estrogen, exerts wide-ranging effects in brain through its action on estrogen receptors (ERs), influencing higher-order cognitive function and neurobiological aging. However, our knowledge of ER expression and regulation by neuroendocrine aging in the living human brain is limited. This in vivo multi-modality neuroimaging study of healthy midlife women reveals progressively higher ER density over the menopause transition in estrogen-regulated networks. Effects were independent of age and plasma estradiol levels, and were highly consistent, correctly classifying all women as being post-menopausal or not. Higher ER density was generally associated with lower gray matter volume and blood flow, and with higher mitochondria ATP production, possibly reflecting compensatory mechanisms. Additionally, ER density predicted changes in thermoregulation, mood, cognition, and libido. Our data provide evidence that ER density impacts brainstructure, perfusion and energy production during female endocrine aging, with clinical implications for women's health.