Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Photochem Photobiol Sci ; 12(9): 1688-99, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23788052

RESUMEN

New low bandgap small molecules based on a squaraine (SQ) chromophore, bis[4-(2,6-di-tert-butyl)vinylpyrylium]squaraine (TBU-SQ), bis[2,6-di-tert-butyl-4-(prop-1-en-2-yl)pyrylium]squaraine (MeTBU-SQ) and bis[4-(but-1-en-2-yl)-2,6-di-tert-butylpyrylium]squaraine (EtTBU-SQ), were synthesized and used as electron donors along with PC70BM for their application in solution processed organic bulk-heterojunction (OBHJ) solar cell (SC). The long wavelength of these SQ dyes are located in between 650-750 nm in thin films and the optical bandgaps are about 1.64, 1.52 and 1.48 eV, respectively. The electrochemical properties of these SQ dyes indicate that they are well suited for the fabrication of OBHJSCs as electron donors along with fullerene derivatives as electron acceptors. The OBHJ photovoltaic (PV) devices fabricated with the blend of TBU-SQ:PC70BM, MeTBU-SQ:PC70BM and EtTBU-SQ:PC70BM cast from chloroform (CF) solvent exhibited a power conversion efficiency (PCE) of 1.71%, 2.15%, and 1.89%, respectively. The PCE of the OBHJSCs based on MeTBU-SQ:PC70BM blends cast from DIO-THF (DIO = 1,8-diiodooctane) additive solvent and cast from DIO-THF with subsequent thermal annealing have been further improved up to 2.73% and 3.14%, respectively. This enhancement in the PCE is attributed to the improvement in the crystalline nature of the blend and more balanced charge transport resulting from the higher hole mobility. All these results have been supported by the quantum chemical calculations.


Asunto(s)
Colorantes/química , Ciclobutanos/química , Fenoles/química , Suministros de Energía Eléctrica , Electrones , Energía Solar
2.
J Phys Chem A ; 111(17): 3378-86, 2007 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-17417824

RESUMEN

We apply many criteria to estimate the diradical character of the ground state singlets of several oxyallyl derivatives. This is carried out as the oxyallyl derivatives like squaraine and croconate dyes can be represented by both mesoionic and diradical formulas, the domination of which would characterize its lowest energy transition. One criterion applied is the singlet-triplet gap, which is known to be inversely proportional to the diradical character. Another criterion is the occupation number; this is determined for the symmetry broken state of the molecules in the unrestricted formalism, and the difference of occupation in the HOMO and LUMO is related to the diradical character. The diradical character of all of the croconates and few squaraines is estimated to be large. All of these have absorption above 750 nm and can be classified as near infrared (NIR) dyes, leading to the inference that NIR absorptions in these molecules are largely due to the dominance of the diradical character. To understand the reliability of the DFT methods for the absorption property predictions of these molecules, TD-DFT studies to calculate the vertical excitation energies have been carried out, using the B3LYP/ BLYP exchange correlation functionals and the LB94 asymptotic functional with and without the inclusion of solvent. The deviations, in both the squaraine series (average lower diradical character), are found to be systematic, and with the inclusion of the solvent in the calculation, the deviations decrease. The best least-squares fit with the experimentally observed values using B3LYP /6-311G(d, p) for the symmetric squaraines yields an R value of 0.92 and, for the unsymmetric squaraines, an R value of 0.936. With inclusion of the solvent, the R value is 0.96 for the symmetric squaraines and 0.961 for the unsymmetric squaraines, indicating that these DFT functionals with linear scaling may be used to study these systems. The croconate dyes, however, have larger deviation from the experimentally observed values in all of the functionals studied even after inclusion of the solvent effects. The deviations are also not systematic. The deviation with respect to the experiment in this case is attributed to the average larger diradical character in this series.

3.
J Phys Chem A ; 111(10): 1943-52, 2007 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-17311369

RESUMEN

Bis(benzofuranonyl)methanolate (BM4i4i) dye and croconate dyes (derivatives of oxyallyl molecules) in general are known to have intense transitions in the near-infrared (NIR) region, indicating small transition energies and large transition dipole moments. These molecules have been reported in the literature to have very large resonant third-order nonlinear optical (NLO) susceptibilities and molecular hyperpolarizabilities (gamma). In this work we investigate using density functional theory (DFT)/ab initio/symmetry adapted cluster-configuration interaction (SAC-CI) techniques the oxyallyl substructure and attribute the NIR transition and the NLO activity to this substructure, which is common in all these molecules. Using valence bond (VB) theory, an analysis of a three-state model of this substructure is carried out. It is seen that the mixture of an intermediate diradical character and some zwitterionic character in the molecule and a large coupling between these two VB resonance forms is responsible for large gamma values. This can be used as a design principle for increasing NLO activity in oxyallyl derivatives.

4.
J Phys Chem A ; 110(41): 11717-29, 2006 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-17034166

RESUMEN

Natural resonance theory (NRT) and natural bond orbital (NBO) analysis have been carried out on a simple symmetrical and an unsymmetrical substituted squaraine with a view of understanding the structure of the latter type of squaraines. It is found that there are some fundamental differences in the structure and bonding between these two types of squaraines particularly in the resonance weights and delocalization energies. These differences are expected to reflect in the low energy transitions and charge transfer in these squaraines. To investigate this, the nature of the lowest energy transitions occurring on excitation in unsymmetrical squaraines has been studied using high-level symmetry adapted cluster-configuration interaction method (SAC/SAC-CI) and compared with reported experimental observations. In general the agreement with the experimental data is very good. The transition dipole moment always lies on the pi-backbone and is quite large in magnitude. The ground state dipole moment in some cases does not change in the excited state upon excitation while in some other cases there is a large reduction/enhancement in the magnitude indicative of some charge rearrangement in this direction. Inclusion of the solvent using the IEFPCM model, a slightly better agreement with the experiment is found in some cases. Studies are carried out with a different basis set and it is found that the change in basis set has very little effect on the transition energies. In the case of weak side donor groups attached to the central ring the larger charge transfer to the central acceptor ring in general takes place from the O- atoms of the squarylium moiety while in the case of strong donors the charge transfer from the O- atoms to the central rings drop down. We have not observed any correlation between the charge transfer in the excited state to the central ring from the side donor groups and the lowest energy excitation in the molecules. Reduction of the HOMO-LUMO gap (an indication of increase of the diradicaloid character) always leads to a bathochromic shift.

5.
J Phys Chem A ; 109(38): 8604-16, 2005 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-16834260

RESUMEN

Symmetric croconate (CR) and squarylium dyes (SQ) are well-known near-infrared (NIR) dyes and, in general, are considered to be donor-acceptor-donor type molecules. It is established in the literature that CR dyes absorb in a longer wavelength region than the corresponding SQ dyes. This has been attributed to the CR ring being a better acceptor than the SQ ring. Thus increasing the donor capacity should lead to a bathochromic shift in both SQ and CR. On the other hand, some experiments reported in the literature have revealed that increasing the conjugation in the donor part of the SQ molecule leads first to red shift, which upon a further increase of the conjugation changes to a blue shift. Hence, to understand the role of the central ring and the substitutions in the absorption of these dyes, we carried out high-level symmetry-adapted cluster-configuration interaction (SAC-CI) calculations of some substituted SQ and CR dyes and compare the absorption energy with the existing experimental data. We found that there is very good agreement. We also carried out SAC-CI calculations of some smaller model molecules, which contain the main oxyallyl substructure. We varied the geometry (angle) of the oxyallyl subgroup and the substitution in these model molecules to establish a correlation with the bathochromic shift. We found that the charge transfer is very small and does not play the key role in the red shift, but on the other hand, the perturbation of the HOMO-LUMO gap (HLG) from both the geometry and substitution seems to be responsible for this shift. We suggest as a design principle that increasing the donor capacity of the groups may not help in the red shift, but introducing groups which perturb the HLG and decrease it without changing the MO character should lead to a larger bathochromic shift.


Asunto(s)
Colorantes/química , Simulación por Computador , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Espectroscopía Infrarroja Corta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...