Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 42(7): 112706, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37389991

RESUMEN

The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3AT485A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3AT503A results in elevated UBE3A activity in neural progenitors and glial cells. Expression of UBE3AT503A from the maternal allele, but not the paternal one, leads to a persistent elevation of UBE3A activity in neurons. Mutant mice display behavioral phenotypes that differ by parent of origin. Expression of UBE3AT503A, irrespective of its parent of origin, promotes transient embryonic expansion of Zcchc12 lineage interneurons. Phenotypes of Ube3aT503A mice are distinct from Angelman syndrome model mice. Our study has clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.


Asunto(s)
Síndrome de Angelman , Trastorno Autístico , Animales , Ratones , Trastorno Autístico/genética , Modelos Animales de Enfermedad , Mutación con Ganancia de Función , Interneuronas/metabolismo , Herencia Materna , Fenotipo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
2.
Nat Aging ; 3(3): 346-365, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36993867

RESUMEN

The commonalities and differences in cell-type-specific pathways that lead to Alzheimer disease (AD) and Parkinson disease (PD) remain unknown. Here, we performed a single-nucleus transcriptome comparison of control, AD and PD striata. We describe three astrocyte subpopulations shared across different brain regions and evolutionarily conserved between humans and mice. We reveal common features between AD and PD astrocytes and regional differences that contribute toward amyloid pathology and neurodegeneration. In contrast, we found that transcriptomic changes in microglia are largely unique to each disorder. Our analysis identified a population of activated microglia that shared molecular signatures with murine disease-associated microglia (DAM) as well as disease-associated and regional differences in microglia transcriptomic changes linking microglia to disease-specific amyloid pathology, tauopathy and neuronal death. Finally, we delineate undescribed subpopulations of medium spiny neurons (MSNs) in the striatum and provide neuronal transcriptomic profiles suggesting disease-specific changes and selective neuronal vulnerability.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Parkinson , Humanos , Ratones , Animales , Enfermedad de Alzheimer/genética , Enfermedad de Parkinson/genética , Transcriptoma/genética , Encéfalo/metabolismo , Microglía/metabolismo , Amiloide/metabolismo , Proteínas Amiloidogénicas/metabolismo
3.
J Vis Exp ; (188)2022 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-36282706

RESUMEN

The increased use of sequencing in medicine has identified millions of coding variants in the human genome. Many of these variants occur in genes associated with neurodevelopmental disorders, but the functional significance of the vast majority of variants remains unknown. The present protocol describes the study of variants for Ube3a, a gene that encodes an E3 ubiquitin ligase linked to both autism and Angelman syndrome. Duplication or triplication of Ube3a is strongly linked to autism, whereas its deletion causes Angelman syndrome. Thus, understanding the valence of changes in UBE3A protein activity is important for clinical outcomes. Here, a rapid, cell-based method that pairs Ube3a variants with a Wnt pathway reporter is described. This simple assay is scalable and can be used to determine the valence and magnitude of activity changes in any Ube3a variant. Moreover, the facility of this method allows the generation of a wealth of structure-function information, which can be used to gain deep insights into the enzymatic mechanisms of UBE3A.


Asunto(s)
Síndrome de Angelman , Trastorno Autístico , Humanos , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , Expresión Génica
4.
Nat Commun ; 12(1): 6809, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34815418

RESUMEN

The mechanisms that underlie the extensive phenotypic diversity in genetic disorders are poorly understood. Here, we develop a large-scale assay to characterize the functional valence (gain or loss-of-function) of missense variants identified in UBE3A, the gene whose loss-of-function causes the neurodevelopmental disorder Angelman syndrome. We identify numerous gain-of-function variants including a hyperactivating Q588E mutation that strikingly increases UBE3A activity above wild-type UBE3A levels. Mice carrying the Q588E mutation exhibit aberrant early-life motor and communication deficits, and individuals possessing hyperactivating UBE3A variants exhibit affected phenotypes that are distinguishable from Angelman syndrome. Additional structure-function analysis reveals that Q588 forms a regulatory site in UBE3A that is conserved among HECT domain ubiquitin ligases and perturbed in various neurodevelopmental disorders. Together, our study indicates that excessive UBE3A activity increases the risk for neurodevelopmental pathology and suggests that functional variant analysis can help delineate mechanistic subtypes in monogenic disorders.


Asunto(s)
Síndrome de Angelman/genética , Trastornos del Neurodesarrollo/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Modelos Animales de Enfermedad , Pruebas de Enzimas , Mutación con Ganancia de Función , Células HEK293 , Humanos , Mutación con Pérdida de Función , Ratones , Ratones Transgénicos , Mutación Missense , Fenotipo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/metabolismo
5.
J Biol Chem ; 292(30): 12503-12515, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28559284

RESUMEN

UBE3A is a HECT domain E3 ubiquitin ligase whose dysfunction is linked to autism, Angelman syndrome, and cancer. Recently, we characterized a de novo autism-linked UBE3A mutant (UBE3AT485A) that disrupts phosphorylation control of UBE3A activity. Through quantitative proteomics and reporter assays, we found that the UBE3AT485A protein ubiquitinates multiple proteasome subunits, reduces proteasome subunit abundance and activity, stabilizes nuclear ß-catenin, and stimulates canonical Wnt signaling more effectively than wild-type UBE3A. We also found that UBE3AT485A activates Wnt signaling to a greater extent in cells with low levels of ongoing Wnt signaling, suggesting that cells with low basal Wnt activity are particularly vulnerable to UBE3AT485A mutation. Ligase-dead UBE3A did not stimulate Wnt pathway activation. Overexpression of several proteasome subunits reversed the effect of UBE3AT485A on Wnt signaling. We also observed that subunits that interact with UBE3A and affect Wnt signaling are located along one side of the 19S regulatory particle, indicating a previously unrecognized spatial organization to the proteasome. Altogether, our findings indicate that UBE3A regulates Wnt signaling in a cell context-dependent manner and that an autism-linked mutation exacerbates these signaling effects. Our study has broad implications for human disorders associated with UBE3A gain or loss of function and suggests that dysfunctional UBE3A might affect additional proteins and pathways that are sensitive to proteasome activity.


Asunto(s)
Trastorno Autístico/metabolismo , Mutación , Complejo de la Endopetidasa Proteasomal/metabolismo , Inhibidores de Proteasoma/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo , Células HEK293 , Humanos , Complejo de la Endopetidasa Proteasomal/genética
6.
Cell ; 162(4): 795-807, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26255772

RESUMEN

Deletion of UBE3A causes the neurodevelopmental disorder Angelman syndrome (AS), while duplication or triplication of UBE3A is linked to autism. These genetic findings suggest that the ubiquitin ligase activity of UBE3A must be tightly maintained to promote normal brain development. Here, we found that protein kinase A (PKA) phosphorylates UBE3A in a region outside of the catalytic domain at residue T485 and inhibits UBE3A activity toward itself and other substrates. A de novo autism-linked missense mutation disrupts this phosphorylation site, causing enhanced UBE3A activity in vitro, enhanced substrate turnover in patient-derived cells, and excessive dendritic spine development in the brain. Our study identifies PKA as an upstream regulator of UBE3A activity and shows that an autism-linked mutation disrupts this phosphorylation control. Moreover, our findings implicate excessive UBE3A activity and the resulting synaptic dysfunction to autism pathogenesis.


Asunto(s)
Síndrome de Angelman/genética , Trastorno Autístico/genética , Mutación Missense , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/genética , Síndrome de Angelman/metabolismo , Animales , Trastorno Autístico/metabolismo , Encéfalo/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Espinas Dendríticas/patología , Embrión de Mamíferos/metabolismo , Estabilidad de Enzimas , Femenino , Humanos , Ratones Endogámicos C57BL , Mutagénesis , Fosforilación , Ubiquitina-Proteína Ligasas/metabolismo
7.
ACS Synth Biol ; 3(11): 788-95, 2014 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-24905630

RESUMEN

Optogenetic control of endogenous signaling can be an important tool for probing cell behavior. Using the photoresponse of the LOV2 domain of Avena sativa phototropin 1, we developed analogues of kinase inhibitors whose activity is light dependent. Inhibitory peptides were appended to the Jα helix, where they potently inhibited kinases in the light but were sterically blocked from kinase interaction in the dark. Photoactivatable inhibitors for cyclic-AMP dependent kinase (PKA) and myosin light chain kinase (MLCK) are described, together with studies that shed light on proper positioning of the peptides in the LOV domain. These inhibitors altered endogenous signaling in living cells and produced light-dependent changes in cell morphodynamics.


Asunto(s)
Fototropinas/química , Fototropinas/efectos de la radiación , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/efectos de la radiación , Animales , Avena/genética , Células COS , Membrana Celular/química , Membrana Celular/metabolismo , Chlorocebus aethiops , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Modelos Moleculares , Quinasa de Cadena Ligera de Miosina/química , Quinasa de Cadena Ligera de Miosina/metabolismo , Optogenética , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Péptidos/efectos de la radiación , Fotobiología , Fototropinas/genética , Fototropinas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo
8.
Nat Chem Biol ; 10(4): 286-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609359

RESUMEN

We describe an approach to selectively activate a kinase in a specific protein complex or at a specific subcellular location within living cells and within minutes. This reveals the effects of specific kinase pathways without time for genetic compensation. The new technique, dubbed rapamycin-regulated targeted activation of pathways (RapRTAP), was used to dissect the role of Src kinase interactions with FAK and p130Cas in cell motility and morphodynamics. The overall effects of Src activation on cell morphology and adhesion dynamics were first quantified, without restricting effector access. Subsets of Src-induced behaviors were then attributed to specific interactions between Src and the two downstream proteins. Activation of Src in the cytoplasm versus at the cell membrane also produced distinct phenotypes. The conserved nature of the kinase site modified for RapRTAP indicates that the technique can be applied to many kinases.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Genes src/efectos de los fármacos , Proteínas Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/ultraestructura , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo , Citoplasma/enzimología , Citoplasma/ultraestructura , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Microscopía Fluorescente , Fenotipo , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
9.
PLoS One ; 6(12): e29423, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22216277

RESUMEN

The continued addition of new neurons to mature olfactory circuits represents a remarkable mode of cellular and structural brain plasticity. However, the anatomical configuration of newly established circuits, the types and numbers of neurons that form new synaptic connections, and the effect of sensory experience on synaptic connectivity in the olfactory bulb remain poorly understood. Using in vivo electroporation and monosynaptic tracing, we show that postnatal-born granule cells form synaptic connections with centrifugal inputs and mitral/tufted cells in the mouse olfactory bulb. In addition, newly born granule cells receive extensive input from local inhibitory short axon cells, a poorly understood cell population. The connectivity of short axon cells shows clustered organization, and their synaptic input onto newborn granule cells dramatically and selectively expands with odor stimulation. Our findings suggest that sensory experience promotes the synaptic integration of new neurons into cell type-specific olfactory circuits.


Asunto(s)
Bulbo Olfatorio/fisiología , Sinapsis/fisiología , Animales , Axones , Ratones
10.
Cell ; 142(1): 144-57, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20603020

RESUMEN

In the mammalian brain, the specification of a single axon and multiple dendrites occurs early in the differentiation of most neuron types. Numerous intracellular signaling events for axon specification have been described in detail. However, the identity of the extracellular factor(s) that initiate neuronal polarity in vivo is unknown. Here, we report that transforming growth factor beta (TGF-beta) initiates signaling pathways both in vivo and in vitro to fate naive neurites into axons. Neocortical neurons lacking the type II TGF-beta receptor (TbetaR2) fail to initiate axons during development. Exogenous TGF-beta is sufficient to direct the rapid growth and differentiation of an axon, and genetic enhancement of receptor activity promotes the formation of multiple axons. Finally, we show that the bulk of these TGF-beta-dependent events are mediated by site-specific phosphorylation of Par6. These results define an extrinsic cue for neuronal polarity in vivo that patterns neural circuits in the developing brain.


Asunto(s)
Axones/metabolismo , Neocórtex/citología , Neocórtex/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Embrión de Mamíferos/metabolismo , Ratones , Neuronas/metabolismo , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta , Receptores de Factores de Crecimiento Transformadores beta/metabolismo
11.
Pharmacol Rev ; 59(1): 14-39, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17329546

RESUMEN

Alterations in cellular structure and synapse composition are central to proper nervous system function. Recent work has identified the ubiquitin-proteasome system (UPS) as a key regulator of neuronal biology. The UPS is essential for the growth and development of immature neurons and is a critical mediator of synaptic adaptability in mature neurons. Furthermore, proteinaceous deposits that accumulate in diverse neurodegenerative disorders are enriched in components of the UPS, suggesting that UPS dysfunction may be pivotal for pathogenesis. Here, we summarize existing knowledge about the role of the UPS in brain function, highlighting recent work delineating its importance in neuronal development, plasticity, and degeneration.


Asunto(s)
Neuronas/fisiología , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/fisiología , Animales , Humanos , Modelos Biológicos , Conducción Nerviosa/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Transmisión Sináptica/fisiología
12.
Brain Cell Biol ; 35(1): 29-38, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17940911

RESUMEN

Pyramidal neurons of the hippocampus and cortex have polarized dendritic arbors, but little is known about the cellular mechanisms distinguishing apical and basal dendrites. We used morphometric analysis and time lapse imaging of cultured hippocampal neurons to show that glutamatergic neurons develop progressive dendritic asymmetry in the absence of polarized extrinsic cues. Thus, pyramidal neurons have a cellular program for polarized dendrite growth independent of tissue microenvironment.


Asunto(s)
Polaridad Celular/fisiología , Dendritas/fisiología , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Animales , Forma de la Célula/fisiología , Células Cultivadas , Colorantes Fluorescentes , Ácido Glutámico/fisiología , Proteínas Fluorescentes Verdes , Procesamiento de Imagen Asistido por Computador , Ratas , Ácido gamma-Aminobutírico/fisiología
13.
Neuron ; 47(5): 629-32, 2005 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-16129392

RESUMEN

Enduring modification of synapses is central to long-lasting neural circuit plasticity. Such adaptations include rapid posttranslational modification of existing synaptic proteins over periods of minutes and persisting changes in the abundance of synaptic proteins over hours to days. Recently, ubiquitination and protein degradation have emerged as additional mechanisms for modifying the function and molecular composition of synapses. These recent findings raise intriguing questions as to how enduring changes at synapses are accomplished in the face of robust, ongoing molecular turnover.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología , Ubiquitina/fisiología , Animales , Humanos , Plasticidad Neuronal , Neurotransmisores/metabolismo , Complejo de la Endopetidasa Proteasomal/fisiología , Médula Espinal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA