Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Anim Biosci ; 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39210790

RESUMEN

Objective: Mulberry (Morus alba) leaf (ML) is a high-quality feed source for ruminants, while it is unclear whether it can enhance the growth performance and meat quality of Xiangdong black goats. Methods: In this study, we investigated the effects of ML supplementation (0, 5, 10, 15, and 20%) on the growth performance, serum variables, and the profiles of amino acids and fatty acids in the muscle of Xiangdong black goats. Results: Results showed that the final body weight, initial and final dry matter intake, and average daily gain increased linearly and quadratically with the increasing ML content (P < 0.05). The serum concentrations of total antioxidant capacity (T-AOC) increased linearly, while immunoglobulin G (IgG) increased quadratically with the increasing ML content (P < 0.05). Conversely, the saturated fatty acids (SFA) content in meat decreased linearly with the increasing ML content (P < 0.05). Compared to goats without ML supplementation, goats fed with 15% ML showed significant increases in serum concentrations of T-AOC, superoxide dismutase, catalase, and IgG (P < 0.05). Furthermore, goats fed with 20% ML displayed significant decreases in SFA (C18:0) content, compared to goats without ML supplementation (P < 0.05). Conclusion: These results suggest that ML supplementation promotes the growth performance of goats. A diet containing 15% ML showed better effects in promoting antioxidant and immunomodulatory activities, while a diet with 20% ML was more effective in enhancing meat flavor in Xiangdong black goats.

2.
Genes (Basel) ; 15(7)2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-39062688

RESUMEN

(1) Background: Matou goats, native to Hunan and Hubei provinces in China, are renowned for their exceptional meat and skin quality. However, a comprehensive whole-genome-based exploration of the genetic architecture of this breed is scant in the literature. (2) Methods: To address this substantial gap, we used whole-genome sequences of 20 Matou goats and compared them with published genomic data of 133 goats of different breeds across China. This comprehensive investigation sought to assess genetic diversity, population structure, and the presence of genomic selection signals. (3) Results: The whole genome of Matou goat populations yielded a substantial catalog of over 19 million single nucleotide polymorphisms (SNPs), primarily distributed within intergenic and intron regions. The phylogenetic tree analysis revealed distinct clades corresponding to each goat population within the dataset. Notably, this analysis positioned Matou goats in a closer genetic affinity with Guizhou White goats, compared to other recognized goat breeds. This observation was corroborated by principal component analysis (PCA) and admixture analysis. Remarkably, Matou goats exhibited diminished genetic diversity and a notable degree of inbreeding, signifying a reduced effective population size. Moreover, the study employed five selective sweep detection methods (including PI, CLR, PI-Ratio, Fst, and XP-EHH) to screen top signal genes associated with critical biological functions, encompassing cardiomyocytes, immunity, coat color, and meat quality. (4) Conclusions: In conclusion, this study significantly advances our understanding of the current genetic landscape and evolutionary dynamics of Matou goats. These findings underscore the importance of concerted efforts in resource conservation and genetic enhancement for this invaluable breed.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/métodos , Polimorfismo de Nucleótido Simple/genética , Filogenia , China , Cruzamiento , Genoma/genética , Variación Genética
3.
Anim Genet ; 55(4): 575-587, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38806279

RESUMEN

Animal genetic resources are crucial for ensuring global food security. However, in recent years, a noticeable decline in the genetic diversity of livestock has occurred worldwide. This decline is pronounced in developing countries, where the management of these resources is insufficient. In the current study, we performed whole genome sequencing for 20 Wuxue (WX) and five Guizhou White (GW) goats. Additionally, we utilized the published genomes of 131 samples representing five different goat breeds from various regions in China. We investigated and compared the genetic diversity and selection signatures of WX goats. Whole genome sequencing analysis of the WX and GW populations yielded 120 425 063 SNPs, which resided primarily in intergenic and intron regions. Population genetic structure revealed that WX exhibited genetic resemblance to GW, Chengdu Brown, and Jintang Black and significant differentiation from the other goat breeds. In addition, three methods (nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity) showed moderate genetic diversity in WX goats. We used nucleotide diversity and composite likelihood ratio methods to identify within-breed signatures of positive selection in WX goats. A total of 369 genes were identified using both detection methods, including genes related to reproduction (GRID2, ZNF276, TCF25, and SPIRE2), growth (HMGA2 and GJA3), and immunity (IRF3 and SRSF3). Overall, this study explored the adaptability of WX goats, shedding light on their genetic richness and potential to thrive in challenges posed by climatic changes and diseases. Further investigations are warranted to harness these insights to enhance more efficient and sustainable goat breeding initiatives.


Asunto(s)
Cabras , Polimorfismo de Nucleótido Simple , Selección Genética , Secuenciación Completa del Genoma , Animales , Cabras/genética , Secuenciación Completa del Genoma/veterinaria , Cruzamiento , Genética de Población , China , Variación Genética , Desequilibrio de Ligamiento
4.
Sci Total Environ ; 937: 173305, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38777056

RESUMEN

Heat stress (HS) poses a substantial challenge to livestock. Studies have demonstrated that HS reduces fertility and leads to gut microbiota dysbiosis in bulls. However, the impact of the gut microbiota on fertility in bulls during HS is still unclear. Our research revealed that HS exposure decreased semen quality in bulls, and fecal microbiota transplantation (FMT) from heat-stressed bulls to recipient mice resulted in a significant decrease in number of testicular germ cells and epididymal sperm. Untargeted metabolomics methodology and 16S rDNA sequencing conjoint analysis revealed that Akkermansia muciniphila (A. muciniphila) seemed to be a key bacterial regulator of spermatogenesis after HS exposure. Moreover, the research indicated that A. muciniphila regulated secondary bile acid metabolism by promoting the colonization of bile salt hydrolase (BSH)-metabolizing bacteria, leading to increase of retinol absorption in the host gut and subsequently elevation of testicular retinoic acid level, thereby improving spermatogenesis. This study sheds light on the relationship between HS-induced microbiota dysbiosis and spermatogenesis, offering a potential therapeutic approach for addressing bull spermatogenic dysfunction triggered by HS exposure.


Asunto(s)
Ácidos y Sales Biliares , Disbiosis , Microbioma Gastrointestinal , Espermatogénesis , Animales , Microbioma Gastrointestinal/fisiología , Espermatogénesis/fisiología , Masculino , Ácidos y Sales Biliares/metabolismo , Ratones , Bovinos , Respuesta al Choque Térmico/fisiología , Akkermansia/fisiología , Trasplante de Microbiota Fecal , Testículo/metabolismo
5.
Front Genet ; 15: 1326828, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38544805

RESUMEN

Xiangdong black goats, indigenous to Hunan Province, China, exhibit remarkable adaptation to challenging environments and possess distinct black coat coloration alongside exceptional meat quality attributes. Despite their significance, comprehensive genomic investigations of this breed have been notably lacking. This study involved a comprehensive examination of population structure, genomic diversity, and regions of selection in Xiangdong black goats utilizing whole-genome sequencing data from 20 samples of this breed and 139 published samples from six other Chinese goat breeds. Our genomic analysis revealed a total of 19,133,125 biallelic single nucleotide polymorphisms (SNPs) within the Xiangdong black goat genome, primarily located in intergenic and intronic regions. Population structure analysis indicated that, compared with Jintang, Guizhou and Chengdu goats, Xiangdong black goats exhibit a reduced level of genetic differentiation but exhibit relatively greater divergence from Jining goats. An examination of genetic diversity within Xiangdong black goats revealed a moderate level of diversity, minimal inbreeding, and a substantial effective population size, which are more reflective of random mating patterns than other Chinese goat breeds. Additionally, we applied four distinct selective sweep methods, namely, the composite likelihood ratio (CLR), fixation index (F ST), θ π ratio and cross-population extended haplotype homozygosity (XP-EHH), to identify genomic regions under positive selection and genes associated with fundamental biological processes. The most prominent candidate genes identified in this study are involved in crucial aspects of goat life, including reproduction (CCSER1, PDGFRB, IFT88, LRP1B, STAG1, and SDCCAG8), immunity (DOCK8, IL1R1, and IL7), lactation and milk production (SPP1, TLL1, and ERBB4), hair growth (CHRM2, SDC1, ITCH, and FGF12), and thermoregulation (PDE10A). In summary, our research contributes valuable insights into the genomic characteristics of the Xiangdong black goat, underscoring its importance and utility in future breeding programs and conservation initiatives within the field of animal breeding and genetics.

6.
Animals (Basel) ; 13(19)2023 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-37835710

RESUMEN

Cadmium (Cd) is an environmental pollutant, widely existing in soil, and can be absorbed and accumulated by plants. Hunan Province exhibits the worst cadmium contamination of farmland in China. Ruminants possess an abundant microbial population in the rumen, which enables them to tolerate various poisonous plants. To investigate whether the rumen microbiota could respond to Cd and mitigate the toxicity of Cd-accumulated maize to ruminants, 6-month-old cattle were fed with 85.82% (fresh basis) normal whole-plant maize silage diet (CON, n = 10) or Cd-accumulated whole-plant maize silage diet (CAM, n = 10) for 107 days. When compared to the CON cattle, CAM cattle showed significantly higher gain-to-feed ratio and an increased total bacterial population in the rumen, but a decreased total bacterial population in the colon. CAM cattle had higher relative abundance of Prevotella and Lachnospiraceae ND3007 group in the rumen, and Lachnospiraceae NK4A136 group and Clostridia vadinBB60 group in the colon. Notably, microbial correlations were enhanced in all segments of CAM cattle, especially Peptostreptococcaceae in the jejunum. Transcriptome analysis revealed down-regulation of several immune-related genes in the rumen of CAM cattle, and differentially expressed genes in the rumen were mostly involved in immune regulation. These findings indicated that feeding Cd-accumulated maize diet with a Cd concentration of 6.74 mg/kg dry matter (DM) could stimulate SCFA-related bacteria in the rumen, induce hormesis to promote weight gain, and improve energy utilization of cattle.

7.
J Agric Food Chem ; 71(42): 15884-15893, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37816197

RESUMEN

The impacts of high milk somatic cell count (SCC) on different milk fractions are not well understood. In this study, proteins in milk exosomes, milk fat globule membrane (MFGM), and whey from cows with low (<105 cells/mL, CG) and high SCC (>5 × 105 cells/mL, HSG) were identified using a tandem mass tag proteomic approach. In total, 1568, 2160, and 1002 proteins were identified, with 65, 552, and 98 proteins being altered by high SCC in exosomes, MFGM, and whey, respectively. With high SCC, the exosome marker (ACTB) was increased in the exosomes of HSG. The main MFGM proteins (BTN1A1, PLIN3, FABP3, and MFGE8) and functional proteins (MUC1, IGSF5, TLR5, and CD36/14) were decreased, while the lipid/energy metabolism-related proteins were increased in the MFGM of HSG. The glycolysis-related proteins were increased in the whey of HSG. Also, the host defense/inflammation-related proteins were changed in three fractions under high SCCs. MFGM was the most sensitive fraction to a high SCC, followed by whey. These findings provide guidance for the early detection of unhealthy mammary glands.


Asunto(s)
Proteínas de la Membrana , Proteoma , Animales , Femenino , Bovinos , Proteoma/genética , Proteoma/metabolismo , Proteómica , Proteínas de la Leche/metabolismo , Glucolípidos , Gotas Lipídicas/metabolismo , Proteína de Suero de Leche , Recuento de Células
8.
Animals (Basel) ; 13(17)2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37685037

RESUMEN

Dairy mastitis is an inflammatory reaction caused by mechanical injury and stress within the mammary gland, during which microbial changes and abnormal lipid metabolism occur. However, the underlying mechanism is still unclear. The present study used a combination of 16S rDNA sequencing technology and lipidomics techniques to reveal the effects of mastitis on lactic microbiota and metabolites in the milk of dairy cows. Twenty multiparous Holstein dairy cows (2-3 parities) with an average body weight of 580 ± 30 kg were selected for this study. The dairy cows were allocated to control group (<5 × 104 cells /mL)) and mastitis group (>5 × 106 cells /mL) based on the somatic cell count. The results showed that mastitis caused a decrease trend in milk production (p = 0.058). The results of the 16 s sequencing indicated a significant decrease (p < 0.05) in the number of Proteobacteria, Tenericutes colonized in mastitis milk, and the number of Firmicutes, Bacteroidetes and Actinobacteria communities increased significantly (p < 0.05). The lipidomics results revealed that the changes in lipid content in mastitis milk were correlated with arachidonic acid metabolism, α -linolenic acid metabolism and glycerol phospholipid metabolism. The results showed that mastitis may cause abnormal lipid metabolism in milk by regulating the diversity of milk microflora, and ultimately affect the milk quality.

9.
Anim Nutr ; 15: 1-9, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37701042

RESUMEN

Eco-friendly and efficient strategies for eliminating cadmium (Cd) phytoremediation plant residues are needed. The present study investigated the feasibility of feeding Cd accumulator maize to beef cattle. In total, 20 cattle at 6 months of age were selected and randomly allocated into two groups fed with 85.82% (fresh basis) Cd accumulator maize (CAM) or normal maize (control [Con]) silage diets for 107 d. Feeding CAM did not affect the body weight (P = 0.24), while it decreased feed intake and increased feed efficiency of beef cattle (P < 0.01). Feeding CAM increased serum concentrations of immunoglobulin A and G, complement 3 and 4, blood urea nitrogen, and low-density lipoprotein cholesterol, decreased serum concentrations of interleukin-6 and lipopolysaccharide (P < 0.05), and caused wider lumens in the renal tubules. The Cd residue in meat was 7 µg/kg beyond the restriction for human food. In the muscle, the unsaturated fatty acids (t11C18:1 and C20:4), Lys, Arg, Pro, and Cys were decreased, while the saturated fatty acids (C10:0, C12:0, and C17:0) and Leu were increased (P < 0.05). Therefore, at the current feeding level, phytoremediation maize increased the feed efficiency of beef cattle, but did present risks to cattle health and production safety, and decreased the meat nutrition and flavor. Further research must be performed to determine whether a lower proper dose of phytoremediation maize and an appropriate feeding period may be possible to ensure no risk to cattle health and the supply of safe meat for humans.

10.
Anim Genet ; 54(3): 284-294, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36864643

RESUMEN

China has diversified resources of indigenous cattle, which are classified into Northern, Central, and Southern groups according to their geographical distribution. Chaling cattle belong to Southern group. This breed is famous for the production of good quality meat with elite meat grades. To analyze the genetic diversity of Chaling cattle, 20 samples were sequenced using whole-genome resequencing technology, along with 138 published whole-genome sequencing data of Indian indicine cattle, Chinese indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle as control. It was found that Chaling cattle originated from Chinese indicine cattle. The genetic diversity of Chaling cattle is higher than that of Indian indicine cattle, East Asian taurine cattle, Eurasian taurine cattle, and European taurine cattle, but lower than that of Chinese indicine cattle and Xiangxi cattle. Annotating the selection signals obtained by composite likelihood ratio, θπ, FST , π-ratio, and XP-EHH methods, several genes associated with immunity, heat tolerance, reproduction, growth, and meat quality showed strong selection signals. In general, this study provides a theoretical basis for analyzing the genetic mechanism of Chaling cattle with excellent adaptability, rough feeding tolerance, good immune performance, and good meat quality. This work lays a foundation for genetic breeding of Chaling cattle in future.


Asunto(s)
Genoma , Polimorfismo de Nucleótido Simple , Bovinos , Animales , China , Secuenciación Completa del Genoma/veterinaria , Reproducción
12.
Biology (Basel) ; 11(12)2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36552284

RESUMEN

Due to the geographical, cultural and environmental variability in Xiangxi, China, distinctive indigenous cattle populations have formed. Among them, Loudi cattle and Xiangxi cattle are the local cattle in Hunan, and the environment in Loudi is relatively more enclosed and humid than that in Xiangxi. To study the genome and origin of Loudi cattle in hot and humid environments, 29 individuals were collected and sequenced by whole-genome resequencing. In addition, genomic data were obtained from public databases for 96 individuals representing different cattle breeds worldwide, including 23 Xiangxi cattle from western Hunan. Genetic analysis indicated that the genetic diversity of Loudi cattle was close to that of Chinese cattle and higher than that of other breeds. Population structure and ancestral origin analysis indicated the relationship between Loudi cattle and other breeds. Loudi has four distinctive seasons, with a stereoscopic climate and extremely rich water resources. Selective sweep analysis revealed candidate genes and pathways associated with environmental adaptation and homeostasis. Our findings provide a valuable source of information on the genetic diversity of Loudi cattle and ideas for population conservation and genome-associated breeding of local cattle in today's extreme climate environment.

13.
Crit Rev Food Sci Nutr ; : 1-22, 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066460

RESUMEN

Reproductive issues are becoming an increasing global problem. There is increasing interest in the relationship between microbiota and reproductive health. Stable microbiota communities exist in the gut, reproductive tract, uterus, testes, and semen. Various effects (e.g., epigenetic modifications, nervous system, metabolism) of dysbiosis in the microbiota can impair gamete quality; interfere with zygote formation, embryo implantation, and embryo development; and increase disease susceptibility, thus adversely impacting reproductive capacity and pregnancy. The maintenance of a healthy microbiota can protect the host from pathogens, increase reproductive potential, and reduce the rates of adverse pregnancy outcomes. In conclusion, this review discusses microbiota in the male and female reproductive systems of multiple animal species. It explores the effects and mechanisms of microbiota on reproduction, factors that influence microbiota composition, and applications of microbiota in reproductive disorder treatment and detection. The findings support novel approaches for managing reproductive diseases through microbiota improvement and monitoring. In addition, it will stimulate further systematic explorations of microbiota-mediated effects on reproduction.

14.
Front Genet ; 13: 816379, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711927

RESUMEN

Understanding the genetic diversity in Xiangxi cattle may facilitate our efforts toward further breeding programs. Here we compared 23 Xiangxi cattle with 78 published genomes of 6 worldwide representative breeds to characterize the genomic variations of Xiangxi cattle. Based on clustering models in population structure analysis, we displayed that Xiangxi cattle had a mutual genome ancestor with Chinese indicine, Indian indicine, and East Asian taurine. Population genetic diversity was analyzed by four methods (nucleotide diversity, inbreeding coefficient, linkage disequilibrium decay and runs of homozygosity), and we found that Xiangxi cattle had higher genomic diversity and weaker artificial selection than commercial breed cattle. Using four testing methods (θπ, CLR, F ST, and XP-EHH), we explored positive selection regions harboring genes in Xiangxi cattle, which were related to reproduction, growth, meat quality, heat tolerance, and immune response. Our findings revealed the extent of sequence variation in Xiangxi cattle at the genome-wide level. All of our fruitful results can bring about a valuable genomic resource for genetic studies and breed protection in the future.

15.
Genes (Basel) ; 13(6)2022 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-35741727

RESUMEN

In this study, we explored the gene expression patterns of the pituitary gland and hypothalamus of Angus cows at different growth and developmental stages by deep sequencing and we identified genes that affect bovine reproductive performance to provide new ideas for improving bovine fertility in production practice. We selected three 6-month-old (weaning period), three 18-month-old (first mating period), and three 30-month-old (early postpartum) Angus cattle. The physiological status of the cows in each group was the same, and their body conformations were similar. After quality control of the sequencing, the transcriptome analyses of 18 samples yielded 129.18 GB of clean data. We detected 13,280 and 13,318 expressed genes in the pituitary gland and hypothalamus, respectively, and screened 35 and 50 differentially expressed genes (DEGs) for each, respectively. The differentially expressed genes in both tissues were mainly engaged in metabolism, lipid synthesis, and immune-related pathways in the 18-month-old cows as compared with the 6-month-old cows. The 30-month-old cows presented more regulated reproductive behavior, and pituitary CAMK4 was the main factor regulating the reproductive behavior during this period via the pathways for calcium signaling, longevity, oxytocin, and aldosterone synthesis and secretion. A variant calling analysis also was performed. The SNP inversions and conversions in each sample were counted according to the different base substitution methods. In all samples, most base substitutions were represented by substitutions between bases A and G, and the probability of base conversion exceeded 70%, far exceeding the transversion. Heterozygous SNP sites exceeded 37.68%.


Asunto(s)
Hipotálamo , Hipófisis , Animales , Bovinos/genética , Femenino , Fertilidad/fisiología , Perfilación de la Expresión Génica , Hipotálamo/metabolismo , Reproducción/genética
16.
Front Vet Sci ; 9: 846662, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35498726

RESUMEN

Cadmium (Cd) is a major heavy metal toxicant found in industrial zones. Humans and animals are exposed to it through their diet, which results in various physiological problems. In the current study, the toxic effects of Cd on the liver were investigated by whole-transcriptome sequencing (RNA-seq) of the livers of Xiangxi heifers fed a diet with excess Cd. We randomly divided six healthy heifers into two groups. The first group received a control diet, whereas the second group received Cd-exceeding diets for 100 days. After 100 days, the livers were collected. A total of 551 differentially expressed mRNAs, 24 differentially expressed miRNAs, and 169 differentially expressed lncRNAs were identified (p < 0.05, |log2FC| >1). Differentially expressed genes (DEGs) were analyzed by gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. We found that under Cd exposure, DEGs were enriched in the adenosine 5'-monophosphate-activated protein kinase pathway, which is involved in autophagy regulation, and the peroxisome proliferator-activated receptor pathway, which is involved in lipid metabolism. In addition, the apolipoprotein A4 gene, which has anti-inflammatory and antioxidant effects, the anti-apoptotic gene ATPase H+/K+ transporting the nongastric alpha2 subunit, and the cholesterol metabolism-associated gene endothelial lipase gene were significantly downregulated. C-X-C motif chemokine ligand 3, cholesterol 7α-hydroxylase, and stearoyl-CoA desaturase, which are involved in the development of fatty liver, were significantly upregulated. These genes revealed the main effects of Cd on the liver of Xiangxi yellow heifers. The current study provides insightful information regarding the DEGs involved in autophagy regulation, apoptosis, lipid metabolism, anti-inflammation, and antioxidant enzyme activity. These may serve as useful biomarkers for predicting and treating Cd-related diseases in the future.

17.
Animals (Basel) ; 12(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35565587

RESUMEN

The objective of this study was to investigate meat quality of Xiangxi yellow cattle of different ages in comparison to Aberdeen Angus. At the ages of 6, 18, and 30 months, 10 female animals for both Xiangxi yellow cattle and Aberdeen Angus cattle were randomly selected and slaughtered. The proximate composition analysis, fatty acid profiles and flavor compounds were measured on the longissimus thoracis (LT) muscle samples. One boneless loin chop was dissected and used for sensory evaluation by a 10-persoon trained taste panel. The data obtained showed that Xiangxi yellow cattle deposited similarly high level of intramuscular fat as Angus at the age of 18 month and the polyunsaturated fatty acid in muscle along with the PUFA/SFA ratio reached the highest levels at this age. Inosine 5'-monophosphate (IMP) was the predominant umami compound in beef, which concentration was significantly higher (p < 0.05) at month 18, but not different between Angus and Xiangxi yellow cattle. Multiple volatile flavor compounds were higher (p < 0.05) in concentrations in meat from Xiangxi yellow cattle at ages of 18 and 30 months when compared to Angus. Sensory analysis revealed that Xiangxi yellow cattle (18 and 30 months) and Angus (30 months) were superior in meat overall eating quality to Xiangxi yellow cattle (6 months) and Angus (6 and 18 months). This study showed that Xiangxi yellow cattle are a fine cattle breed with equal or even better meat quality attributes when compared to Angus. It is proper to slaughter Xiangxi yellow cattle at the age of 18 months for high quality beef production.

18.
J Anim Physiol Anim Nutr (Berl) ; 104(4): 987-997, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32072722

RESUMEN

The objective of this experiment was to test the effect of supplementation of analogues of methionine 2-hydroxy-4-methylthio butanoic acid isopropyl ester (HMBi) on growth, digestibility, antioxidant index, abundance and composition of rumen bacterial community in Xiangdong Black Goats. Thirty-six growing Xiangdong Black Goats were divided into four groups in such a way that each group had three replicate and each replicate had three animals. Experimental groups were assigned four levels of HMBi in basal diet: 0% HMBi (on dietary DM basis); 0.05% HMBi; 0.10% HMBi and 0.20% HMBi. Goats fed 0.10% HMBi in basal diet had higher average daily weight gain (p < .05). Goats fed 0.05% HMBi had higher apparent digestibility of gross energy (p < .01). The group 0% HMBi supplementation had a higher level of superoxide dismutase and malondialdehyde (p < .01). The goats fed 0.20% HMBi in basal diet had a higher level of insulin and leptin (p < .01) than 0% HMBi supplementation goats. 16S rRNA high-throughput sequencing analysis revealed similarities in the community composition, species diversity and relative abundance of dominant bacteria at the phylum and genus levels among the four groups. In conclusion, HMBi supplementation has no negative effect on apparent digestibility, antioxidant index and the ruminal bacteria composition. Therefore, 0.10% supplementation of HMBi is recommended in the diet of goats to improve the growth performance.


Asunto(s)
Alimentación Animal , Butiratos/farmacología , Digestión/efectos de los fármacos , Cabras/fisiología , Rumen/microbiología , Animales , Antioxidantes/metabolismo , Bacterias/clasificación , Bacterias/efectos de los fármacos , Butiratos/administración & dosificación , Suplementos Dietéticos , Relación Dosis-Respuesta a Droga , Femenino , Cabras/sangre
19.
Mutagenesis ; 33(4): 291-299, 2018 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-30184101

RESUMEN

Ammonia, produced mainly from the deamination of amino acids and glutamine, is one of the major toxic components in blood and tissues that may affect bovine health. However, the physiological and pathological roles of ammonia in the mammary glands are not understood clearly. In the present study, the bovine mammary epithelial cell line (MAC-T) was utilised as an in vitro model to determine the effects of ammonia on bovine mammary gland. We demonstrated that ammonia stimulated the production of intracellular reactive oxygen species, decreased mitochondrial membrane potential, interrupted intracellular calcium ion (Ca2+) homeostasis and induced cell apoptosis. Ammonia also significantly reduced cell viability and increased the proportion of apoptotic cells through enhancing the level of p53 phosphorylation and increasing the expressions of BAX, caspase 8, caspase 9, caspase 3. Interestingly, bumetanide, a specific Na+ K+ 2Cl--cotransporter inhibitor, dramatically abolished the damaging effects of ammonia on the cells. These data suggest that ammonia exposure induces apoptosis in bovine mammary epithelial cells via activation of the p53 pathway and the mitochondrial apoptotic pathway, and that these effects involved the Na+ K+ 2Cl--cotransporter.


Asunto(s)
Amoníaco/farmacología , Apoptosis/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Glándulas Mamarias Animales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Animales , Calcio/metabolismo , Bovinos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Epiteliales/metabolismo , Glándulas Mamarias Animales/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo
20.
Anim Reprod Sci ; 198: 90-98, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30213570

RESUMEN

Maternal nutrition during gestation is a leading factor of modifying the foetal epigenome and phenotype for mammals. Imprinting genes have important roles in regulating foetal growth, programming and development. There, however, are limited data available on the effects of feed intake restriction on the expression of imprinting genes in pregnant goats. The present study, therefore, was conducted to assess the effects of maternal feed intake restriction on the relative abundance of mRNA for growth imprinting, DNA methyltransferase (DNMT) and epigenetic transcription-related genes in the liver and heart of foetal goats during gestation. A total of 24 Liuyang black goats (2.0±0.3 yr) with similar body weight (BW, 31.22±8.09 kg) and parity (2) were allocated equally to either a control group (CG) or a restriction group (RG) during both early (from 26 to 65 days) and late (from 96 to 135 days) gestation. All goats were fed a mixed diet and had free access to fresh water. The feed of the RG was 40% less than that of the CG. The early and late gestation goats were weighed, bled and slaughtered on days 65 and 135 of gestation, respectively. In early gestation, the foetal weight, body length, the weight of foetal heart and liver were greater (P < 0.05) in the RG. The CpG methylation of genomic DNA in the foetal heart was less (P = 0.0001) in the RG. The relative abundance of mRNA of methyl-CpG-binding domain protein 2 (MBD2) and methyl-CpG-binding domain protein 3 (MBD3) genes in the foetal liver were greater (P < 0.05) in the RG. During the late gestation, the foetal weight, heart weight and liver weight were less (P < 0.05) in the RG. The relative abundance of mRNA for the MBD2 gene (P = 0.043) in the foetal heart, and the ten-eleven translocation protein 1 (TET1) gene (P < 0.05) in both the foetal heart and liver were greater in the RG. These results indicate feed intake restriction during gestation influenced foetal development and regulated the relative abundance of mRNA for epigenetic transcription-related genes.


Asunto(s)
Epigénesis Genética/fisiología , Desarrollo Fetal/genética , Feto/metabolismo , Privación de Alimentos/fisiología , Impresión Genómica , Cabras , Fenómenos Fisiologicos Nutricionales Maternos/fisiología , Alimentación Animal , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Restricción Calórica/veterinaria , Femenino , Embarazo , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...