Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.204
Filtrar
1.
PeerJ ; 12: e17616, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38952966

RESUMEN

Background: Mesenchymal stem cells (MSCs) are increasingly recognized for their regenerative potential. However, their clinical application is hindered by their inherent variability, which is influenced by various factors, such as the tissue source, culture conditions, and passage number. Methods: MSCs were sourced from clinically relevant tissues, including adipose tissue-derived MSCs (ADMSCs, n = 2), chorionic villi-derived MSCs (CMMSCs, n = 2), amniotic membrane-derived MSCs (AMMSCs, n = 3), and umbilical cord-derived MSCs (UCMSCs, n = 3). Passages included the umbilical cord at P0 (UCMSCP0, n = 2), P3 (UCMSCP3, n = 2), and P5 (UCMSCP5, n = 2) as well as the umbilical cord at P5 cultured under low-oxygen conditions (UCMSCP5L, n = 2). Results: We observed that MSCs from different tissue origins clustered into six distinct functional subpopulations, each with varying proportions. Notably, ADMSCs exhibited a higher proportion of subpopulations associated with vascular regeneration, suggesting that they are beneficial for applications in vascular regeneration. Additionally, CMMSCs had a high proportion of subpopulations associated with reproductive processes. UCMSCP5 and UCMSCP5L had higher proportions of subpopulations related to female reproductive function than those for earlier passages. Furthermore, UCMSCP5L, cultured under low-oxygen (hypoxic) conditions, had a high proportion of subpopulations associated with pro-angiogenic characteristics, with implications for optimizing vascular regeneration. Conclusions: This study revealed variation in the distribution of MSC subpopulations among different tissue sources, passages, and culture conditions, including differences in functions related to vascular and reproductive system regeneration. These findings hold promise for personalized regenerative medicine and may lead to more effective clinical treatments across a spectrum of medical conditions.


Asunto(s)
Tejido Adiposo , Células Madre Mesenquimatosas , Cordón Umbilical , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/fisiología , Humanos , Cordón Umbilical/citología , Femenino , Tejido Adiposo/citología , Células Cultivadas , Vellosidades Coriónicas/fisiología , Amnios/citología , Diferenciación Celular
2.
Cardiovasc Diabetol ; 23(1): 234, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965584

RESUMEN

BACKGROUND: The abnormal low-density protein cholesterol (LDL-C) level in the development of atherosclerosis is often comorbid in individuals with type 2 diabetes mellitus(T2DM). This study aimed to investigate the aggravating effect of abnormal LDL-C levels on coronary artery plaques assessed by coronary computed tomography angiography (CCTA) in T2DM. MATERIALS AND METHODS: This study collected 3439 T2DM patients from September 2011 to February 2022. Comparative analysis of differences in coronary plaque characteristics was performed for the patients between the normal LDL-C level group and the abnormal LDL-C level group. Factors with P < 0.1 in the univariable linear regression analyses were included in the multivariable linear stepwise regression. RESULTS: A total of 2820 eligible T2DM patients were included and identified as the normal LDL-C level group (n = 973) and the abnormal LDL-C level group (n = 1847). Compared with the normal LDL-C level group, both on a per-patient basis and per-segment basis, patients with abnormal LDL-C level showed more calcified plaques, partially calcified plaques, low attenuation plaques, positive remodellings, and spotty calcifications. Multivessel obstructive disease (MVD), nonobstructive stenosis (NOS), obstructive stenosis (OS), plaque involvement degree (PID), segment stenosis score (SSS), and segment involvement scores (SIS) were likely higher in the abnormal LDL-C level group than that in the normal LDL-C level group (P < 0.001). In multivariable linear stepwise regression, the abnormal LDL-C level was validated as an independent positive correlation with high-risk coronary plaques and the degree and extent of stenosis caused by plaques (low attenuation plaque: ß = 0.116; positive remodelling: ß = 0.138; spotty calcification: ß = 0.091; NOS: ß = 0.427; OS: ß = 0.659: SIS: ß = 1.114; SSS: ß = 2.987; PID: ß = 2.716, all P value < 0.001). CONCLUSIONS: Abnormal LDL-C levels aggravate atherosclerotic cardiovascular disease (ASCVD) in patients with T2DM. Clinical attention deserves to be caught by the tailored identification of cardiovascular risk categories in T2DM individuals and the achievement of the corresponding LDL-C treatment goal.


Asunto(s)
Biomarcadores , LDL-Colesterol , Angiografía por Tomografía Computarizada , Angiografía Coronaria , Enfermedad de la Arteria Coronaria , Diabetes Mellitus Tipo 2 , Placa Aterosclerótica , Valor Predictivo de las Pruebas , Calcificación Vascular , Humanos , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/diagnóstico , Masculino , Femenino , Persona de Mediana Edad , Enfermedad de la Arteria Coronaria/diagnóstico por imagen , Enfermedad de la Arteria Coronaria/sangre , Enfermedad de la Arteria Coronaria/epidemiología , Anciano , LDL-Colesterol/sangre , Biomarcadores/sangre , Calcificación Vascular/diagnóstico por imagen , Calcificación Vascular/epidemiología , Calcificación Vascular/sangre , Factores de Riesgo , Medición de Riesgo , Dislipidemias/sangre , Dislipidemias/epidemiología , Dislipidemias/diagnóstico , Estudios Retrospectivos , Vasos Coronarios/diagnóstico por imagen , Índice de Severidad de la Enfermedad , Pronóstico , Estudios Transversales
3.
Bot Stud ; 65(1): 18, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992189

RESUMEN

BACKGROUND: The emergence of Spodoptera frugiperda (fall armyworm; FAW) in the world has raised concerns regarding its impact on crop production, particularly on corn and sorghum. While chemical control and Bt crops have been effective in managing FAW damage, the development of pesticide-resistant and Bt-resistant strains necessitates alternative control methods. The push-pull farming system has gained attention, but direct utilization of African plant species in Taiwan faces challenges due to invasive potential and climatic disparities. Therefore, identifying and evaluating suitable local plant species, such as Napier grass (Pennisetum purpureum), Desmodium species, and signal grass (Brachiaria brizantha), is crucial for implementing effective FAW management strategies in Taiwan. RESULTS: In screening fifty Napier grass germplasms, all demonstrated an antibiotic effect, reducing leaf consumption compared to corn. Notably, thirty-five germplasms exhibited robust antibiotic traits, decreasing FAW consumption and increasing mortality rates. Three Napier grass germplasms also attracted more female moths for oviposition. Further evaluation of selected Napier grass germplasms and signal grass demonstrated efficacy in reducing FAW larval weight and survival duration. Additionally, Desmodium species, particularly D. uncinatum, showed promising toxicity against FAW larvae. CONCLUSION: Our findings support the effectiveness of selected Napier grass germplasms and signal grass as pull plants, and highlight the potential of D. uncinatum as a push plant in FAW management strategies in Taiwan.

4.
Angew Chem Int Ed Engl ; : e202411725, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39045805

RESUMEN

The strategy of in vivo self-assembly has been developed for improved enrichment and long-term retention of anticancer drug in tumor tissues. However, most self-assemblies with non-covalent bonding interactions are susceptible to complex physiological environments, leading to weak stability and loss of biological function. Here, we develop a coupling-induced assembly (CIA) strategy to generate covalently crosslinked nanofibers, which is applied for in situ constructing artificial shell on mitochondria. The oxidation-responsive peptide-porphyrin conjugate P1 is synthesized, which self-assemble into nanoparticles. Under the oxidative microenvironment of mitochondria, the coupling of thiols in P1 causes the formation of dimers, which is further ordered and stacked into crosslinked nanofibers. As a result, the artificial shell is constructed on the mitochondria efficiently through multivalent cooperative interactions due to the increased binding sites. Under ultrasound (US) irradiation, the porphyrin molecules in the shell produce a large amount of reactive oxygen species (ROS) that act on the adjacent mitochondrial membrane, exhibiting ~2-fold higher antitumor activity than nanoparticles in vitro and in vivo. Therefore, the mitochondria-targeted CIA strategy provides a novel perspective on improved sonodynamic therapy (SDT) and shows potential applications in antitumor therapies.

5.
Acta Cardiol ; : 1-8, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041382

RESUMEN

OBJECTIVES: Aortic valve sclerosis has been proposed to signify greater cardiovascular risk; the correlation between serum trace elements and aortic valve sclerosis has been reported. Therefore, an in-depth exploration of the risk factors for aortic valve sclerosis and early intervention may reduce the risk of cardiovascular disease. METHODS: In this study, Patients with aortic valve sclerosis and non-aortic valve sclerosis who underwent echocardiographic diagnosis in the People's Hospital of Xinjiang Uygur Autonomous Region during the period from 2019 to 2021 were selected for this study. The correlation between aortic valve sclerosis and serum phosphorus, calcium, and magnesium levels was explored using the propensity score matching technique by pairing the two groups of patients 1:1. RESULTS: A total of 1,533 non-aortic valve sclerosis and 1,533 aortic valve sclerosis patients were included. Logistic regression analysis showed that serum magnesium [OR: 0.346; 95%CI: 0.227, 0.528] and serum calcium [OR: 7.022; 95%CI: 4.755, 10.369] were influential factors. Patients with low, intermediate, and high serum magnesium levels had a significantly lower risk of aortic valve sclerosis compared to patients with very low micronutrient levels (p < 0.05). Comparatively, patients with low or high serum calcium levels had an elevated risk of aortic valve sclerosis (p < 0.05). CONCLUSION: Serum magnesium may have a protective role against aortic valve sclerosis, while both low and high levels of serum calcium could be risk factor for the condition. These serum micronutrients may be indications of cardiovascular disease risk prediction or prevention, and more research is required.

6.
Mol Neurobiol ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023795

RESUMEN

Caspase-12 is a caspase family member for which functions in regulating cell death and inflammation have previously been suggested. In this study, we used caspase-12 lacZ reporter mice to elucidate the expression pattern of caspase-12 in order to obtain an idea about its possible in vivo function. Strikingly, these reporter mice showed that caspase-12 is expressed explicitly in Purkinje neurons of the cerebellum. As this observation suggested a function for caspase-12 in Purkinje neurons, we analyzed the brain and behavior of caspase-12 deficient mice in detail. Extensive histological analyses showed that caspase-12 was not crucial for establishing cerebellum structure or for maintaining Purkinje cell numbers. We then performed behavioral tests to investigate whether caspase-12 deficiency affects memory, motor, and psychiatric functions in mice. Interestingly, while the absence of caspase-12 did not affect memory and motor function, caspase-12 deficient mice showed depression and hyperactivity tendencies, together resembling manic behavior. Next, suggesting a possible molecular mechanistic explanation, we showed that caspase-12 deficient cerebella harbored diminished signaling through the brain-derived neurotrophic factor/tyrosine kinase receptor B/cyclic-AMP response binding protein axis, as well as strongly enhanced expression of the neuronal activity marker c-Fos. Thus, our study establishes caspase-12 expression in mouse Purkinje neurons and opens novel avenues of research to investigate the role of caspase-12 in regulating psychiatric behavior.

7.
Plant Cell Environ ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-39031544

RESUMEN

The response of mesophyll conductance (gm) to CO2 plays a key role in photosynthesis and ecosystem carbon cycles under climate change. Despite numerous studies, there is still debate about how gm responds to short-term CO2 variations. Here we used multiple methods and looked at the relationship between stomatal conductance to CO2 (gsc) and gm to address this aspect. We measured chlorophyll fluorescence parameters and online carbon isotope discrimination (Δ) at different CO2 mole fractions in sunflower (Helianthus annuus L.), cowpea (Vigna unguiculata L.), and wheat (Triticum aestivum L.) leaves. The variable J and Δ based methods showed that gm decreased with an increase in CO2 mole fraction, and so did stomatal conductance. There were linear relationships between gm and gsc across CO2 mole fractions. gm obtained from A-Ci curve fitting method was higher than that from the variable J method and was not representative of gm under the growth CO2 concentration. gm could be estimated by empirical models analogous to the Ball-Berry model and the USO model for stomatal conductance. Our results suggest that gm and gsc respond in a coordinated manner to short-term variations in CO2, providing new insight into the role of gm in photosynthesis modelling.

8.
Med Sci Monit ; 30: e943785, 2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38879751

RESUMEN

Stroke is a cerebrovascular disease that impairs blood supply to localized brain tissue regions due to various causes. This leads to ischemic and hypoxic lesions, necrosis of the brain tissue, and a variety of functional disorders. Abnormal cortical activation and functional connectivity occur in the brain after a stroke, but the activation patterns and functional reorganization are not well understood. Rehabilitation interventions can enhance functional recovery in stroke patients. However, clinicians require objective measures to support their practice, as outcome measures for functional recovery are based on scale scores. Furthermore, the most effective rehabilitation measures for treating patients are yet to be investigated. Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging method that detects changes in cerebral hemodynamics during task performance. It is widely used in neurological research and clinical practice due to its safety, portability, high motion tolerance, and low cost. This paper briefly introduces the imaging principle and the advantages and disadvantages of fNIRS to summarize the application of fNIRS in post-stroke rehabilitation.


Asunto(s)
Espectroscopía Infrarroja Corta , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Espectroscopía Infrarroja Corta/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Accidente Cerebrovascular/diagnóstico por imagen , Neuroimagen/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Recuperación de la Función/fisiología
9.
Int J Biol Macromol ; 275(Pt 1): 133467, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38945319

RESUMEN

Hyaluronic acid (HA) serves as a vitreous substitute owing to its ability to mimic the physical functions of native vitreous humor. However, pure HA hydrogels alone do not provide sufficient protection against potential inflammatory risks following vitrectomy. In this study, HA was crosslinked with 1,4-butanediol diglycidyl ether (BDDE) to form HA hydrogels (HB). Subsequently, the anti-inflammatory agent epigallocatechin gallate (EGCG) was added to the hydrogel (HBE) for ophthalmic applications as a vitreous substitute. The characterization results indicated the successful preparation of HB with transparency, refractive index, and osmolality similar to those of native vitreous humor, and with good injectability. The anti-inflammatory ability of HBE was also confirmed by the reduced expression of inflammatory genes in retinal pigment epithelial cells treated with HBE compared with those treated with HB. In a New Zealand white rabbit model undergoing vitreous substitution treatment, HBE 50 (EGCG 50 µM addition) exhibited positive results at 28 days post-surgery. These outcomes included restored intraocular pressure, improved electroretinogram responses, minimal increase in corneal thickness, and no inflammation during histological examination. This study demonstrated the potential of an injectable HA-BDDE cross-linked hydrogel containing EGCG as a vitreous substitute for vitrectomy applications, offering prolonged degradation time and anti-inflammatory effects postoperatively.

10.
Virulence ; 15(1): 2367671, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38910312

RESUMEN

Viral diseases are among the main threats to public health. Understanding the factors affecting viral invasion is important for antiviral research. Until now, it was known that most viruses have very low plaque-forming unit (PFU)-to-particle ratios. However, further investigation is required to determine the underlying factors. Here, using quantitative single-particle analysis methods, the invasion of Semliki Forest virus (SFV), Japanese encephalitis virus (JEV), and influenza A virus (IAV) containing attachment to the cell surface, entry into the cell, transport towards the cell interior, and fusion with endosomes to release nucleocapsids were quantitatively analysed in parallel. It was found that for SFV with an PFU-to-particle ratio of approximately 1:2, an entry efficiency of approximately 31% limited infection. For JEV, whose PFU-to-particle ratio was approximately 1:310, an attachment efficiency of approximately 27% and an entry efficiency of 10% were the main factors limiting its infection. Meanwhile, for IAV with PFU-to-particle ratios of 1:8100, 5% attachment efficiency, 9% entry efficiency, and 53% fusion efficiency significantly limited its infection. These results suggest that viruses with different infectivities have different limited steps in the invasion process. Moreover, there are significant differences in attachment efficiencies among viruses, emphasizing the pivotal role of attachment in viral invasion. The influence of the virus purification method on virus invasion was also investigated. This study, for the first time, reports the efficiencies of different stages of virus invasion, leading to a better understanding of virus invasion and providing a protocol to quantitatively analyse the virus invasion efficiency.


Asunto(s)
Virus de la Influenza A , Virus de los Bosques Semliki , Internalización del Virus , Virus de la Influenza A/fisiología , Animales , Virus de los Bosques Semliki/fisiología , Humanos , Virus de la Encefalitis Japonesa (Especie)/fisiología , Línea Celular , Acoplamiento Viral , Endosomas/virología
12.
Photochem Photobiol Sci ; 23(6): 1031-1039, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38839721

RESUMEN

A novel cyclic chalcone fluorescent probe C-PN was synthesized to detect ONOO-. After reaction with peroxynitrite, the double bond of C-PN in the cyclic chalcone structure was disconnected, which caused the change of intramolecular charge transfer (ICT) effect, emitting blue fluorescence and quenching orange red fluorescence. Visible to the naked eye, the color of the probe solution changed. The probe showed low sensitivity (detection limit = 20.2 nm), short response time (less than 60 s) at low concentration of ONOO-, good visibility, and good selectivity and stability for ONOO-.

13.
Clin Chim Acta ; 561: 119814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38879063

RESUMEN

BACKGROUND: Hepatocellular cancer (HCC) is one of the most harmful tumors to human health. Currently, there is still a lack of highly sensitive and specific HCC biomarkers in clinical practice. In this study, we aimed to explore the diagnostic performance of prostaglandin A2 (PGA2) for the early detection of HCC. METHODS: Untargeted metabolomic analyses on normal control (NC) and HCC participants in the discovery cohort were performed, and PGA2 was identified to be dysregulated in HCC. A liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for detecting serum PGA2 was established and applied to validate the dysregulation of PGA2 in another independent validation cohort. Receiver operating characteristic (ROC), decision curve analysis (DCA) and some other statistical analyses were performed to evaluate the diagnostic performance of PGA2 for HCC. RESULTS: At first, PGA2 was found to be dysregulated in HCC in untargeted metabolomic analyses. Then a precise quantitative LC-MS/MS method for PGA2 has been established and has passed rigorous method validation. Targeted PGA2 analyses confirmed that serum PGA2 was decreased in HCC compared to normal-risk NC and high-risk cirrhosis group. Subsequently, PGA2 was identified as a novel biomarker for the diagnosis of HCC, with an area under the ROC curve (AUC) of 0.911 for differentiating HCC from the combined NC + cirrhosis groups. In addition, PGA2 exhibited high performance for differentiating small-size (AUC = 0.924), early-stage (AUC = 0.917) and AFP (-) HCC (AUC = 0.909) from the control groups. The combination of PGA2 and AFP might be useful in the surveillance of risk population for HCC and early diagnosis of HCC. CONCLUSION: This study establishes that PGA2 might be a novel diagnostic biomarker for HCC.


Asunto(s)
Biomarcadores de Tumor , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangre , Biomarcadores de Tumor/sangre , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangre , Masculino , Femenino , Persona de Mediana Edad , Espectrometría de Masas en Tándem , Cromatografía Liquida , Curva ROC
14.
Jpn J Ophthalmol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38833074

RESUMEN

PURPOSE: To evaluate the effectiveness and safety of selective ophthalmic arterial injection (SOAI) for retinoblastoma utilizing a microballoon catheter system with an M chamber. STUDY DESIGN: Retrospective analysis. METHODS AND PATIENTS: This study was sanctioned by theNational Cancer Center Hospital' Independent Ethics Committee. The surgeon was a general interventional radiologist. After confirming that the distal internal carotid artery was not delineated by balloon occlusion and the ophthalmic artery was visualized using digital subtraction angiography, melphalan was manually administered. Notably, in cases presenting bilateral retinoblastoma, both eyes received treatment in a singular, low-dose procedure. Between July 2015 and December 2021, 125 patients with retinoblastoma (68 boys and 57 girls) underwent SOAI at our facility. The average age at initial treatment was 19.3 months. The study covered 250 procedures, with patients undergoing an average of 3.7 procedures. RESULTS: The success rate of the procedure was 99.2%, with a mean procedure duration of 18.3 min. Two distinct technical failures were recorded: one attributed to an internal carotid artery having a wide lumen and the other due to the ophthalmic artery remaining undetected on angiography post-balloon occlusion of the internal carotid artery. Adverse events were minimal but included bronchospasm post-procedure and severe orbital inflammation in 0.8% and 0.4% of cases, respectively. CONCLUSION: SOAI using the microballoon catheter with the M chamber is a feasible and safe procedure for the treatment of retinoblastoma. The success rate was 99.2%. This system can be recommended as intra-arterial chemotherapy for retinoblastoma.

15.
J Hepatocell Carcinoma ; 11: 1171-1183, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911292

RESUMEN

Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related deaths globally and the sixth most common cancer worldwide. Evidence shows that growth differentiation factor 15 (GDF15) contributes to hepatocarcinogenesis through various mechanisms. This paper reviews the latest insights into the role of GDF15 in the development of HCC, its role in the immune microenvironment of HCC, and its molecular mechanisms in metabolic dysfunction associated steatohepatitis (MASH) and metabolic associated fatty liver disease (MAFLD)-related HCC. Additionally, as a serum biomarker for HCC, diagnostic and prognostic value of GDF15 for HCC is summarized. The article elaborates on the immunological effects of GDF15, elucidating its effects on hepatic stellate cells (HSCs), liver fibrosis, as well as its role in HCC metastasis and tumor angiogenesis, and its interactions with anticancer drugs. Based on the impact of GDF15 on the immune response in HCC, future research should identify its signaling pathways, affected immune cells, and tumor microenvironment interactions. Clinical studies correlating GDF15 levels with patient outcomes can aid personalized treatment. Additionally, exploring GDF15-targeted therapies with immunotherapies could improve anti-tumor responses and patient outcomes.

16.
Aust Endod J ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38924249

RESUMEN

This retrospective cohort study compared the effect of primary root canal treatment (RCT) with root canal retreatment (Re-RCT) on patient-reported outcomes in Kuala Lumpur, Malaysia. Forty randomly selected adults participated (RCT n = 20; Re-RCT n = 20). The impact their dentition had on the Oral Health Impact Profile-14 (OHIP-14) was assessed by calculating the prevalence of oral health impact, and the severity score. Focus group discussions using a semi-structured guide were arranged through an online meeting platform. Qualitative content analysis identified common themes, and relevant quotes gathered. The impact on OHIP-14 was limited for both RCT and Re-RCT groups with no significant differences in the prevalence of oral health impact. Significant differences were found for functional limitation (RCT higher) and psychological discomfort (Re-RCT higher). Common themes from the discussions include the importance of retaining teeth, the significance of effective communication between clinicians and patients and that the respondents were satisfied with the treatment.

17.
Sci Rep ; 14(1): 11237, 2024 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755283

RESUMEN

Osteoarthritis (OA) is the most prevalent form of arthritis, characterized by a complex pathogenesis. One of the key factors contributing to its development is the apoptosis of chondrocytes triggered by oxidative stress. Involvement of peroxisome proliferator-activated receptor gamma (PPARγ) has been reported in the regulation of oxidative stress. However, there remains unclear mechanisms that through which PPARγ influences the pathogenesis of OA. The present study aims to delve into the role of PPARγ in chondrocytes apoptosis induced by oxidative stress in the context of OA. Primary human chondrocytes, both relatively normal and OA, were isolated and cultured for the following study. Various assessments were performed, including measurements of cell proliferation, viability and cytotoxicity. Additionally, we examined cell apoptosis, levels of reactive oxygen species (ROS), nitric oxide (NO), mitochondrial membrane potential (MMP) and cytochrome C release. We also evaluated the expression of related genes and proteins, such as collagen type II (Col2a1), aggrecan, inducible nitric oxide synthase (iNOS), caspase-9, caspase-3 and PPARγ. Compared with relatively normal cartilage, the expression of PPARγ in OA cartilage was down-regulated. The proliferation of OA chondrocytes decreased, accompanied by an increase in the apoptosis rate. Down-regulation of PPARγ expression in OA chondrocytes coincided with an up-regulation of iNOS expression, leading to increased secretion of NO, endogenous ROS production, and decrease of MMP levels. Furthermore, we observed the release of cytochrome C, elevated caspase-9 and caspase-3 activities, and reduction of the components of extracellular matrix (ECM) Col2a1 and aggrecan. Accordingly, utilization of GW1929 (PPARγ Agonists) or Z-DEVD-FMK (caspase-3 inhibitor) can protect chondrocytes from mitochondrial-related apoptosis and alleviate the progression of OA. During the progression of OA, excessive oxidative stress in chondrocytes leads to apoptosis and ECM degradation. Activation of PPARγ can postpone OA by down-regulating caspase-3-dependent mitochondrial apoptosis pathway.


Asunto(s)
Apoptosis , Caspasa 3 , Condrocitos , Mitocondrias , Osteoartritis , PPAR gamma , Especies Reactivas de Oxígeno , Humanos , Condrocitos/metabolismo , Condrocitos/patología , PPAR gamma/metabolismo , Caspasa 3/metabolismo , Osteoartritis/metabolismo , Osteoartritis/patología , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo , Potencial de la Membrana Mitocondrial , Proliferación Celular , Óxido Nítrico/metabolismo , Células Cultivadas , Persona de Mediana Edad , Anciano , Femenino , Masculino
18.
Sci Rep ; 14(1): 12418, 2024 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816453

RESUMEN

Body core temperature (Tc) monitoring is crucial for minimizing heat injury risk. However, validated strategies are invasive and expensive. Although promising, aural canal temperature (Tac) is susceptible to environmental influences. This study investigated whether incorporation of external auricle temperature (Tea) into an ear-based Tc algorithm enhances its accuracy during multiple heat stress conditions. Twenty males (mean ± SD; age = 25 ± 3 years, BMI = 21.7 ± 1.8, body fat = 12 ± 3%, maximal aerobic capacity (VO2max) = 64 ± 7 ml/kg/min) donned an ear-based wearable and performed a passive heating (PAH), running (RUN) and brisk walking trial (WALK). PAH comprised of immersion in hot water (42.0 ± 0.3 °C). RUN (70 ± 3%VO2max) and WALK (50 ± 10%VO2max) were conducted in an environmental chamber (Tdb = 30.0 ± 0.2 °C, RH = 71 ± 2%). Several Tc models, developed using Tac, Tea and heart rate, were validated against gastrointestinal temperature. Inclusion of Tea as a model input improved the accuracy of the ear-based Tc algorithm. Our best performing model (Trf3) displayed good group prediction errors (mean bias error = - 0.02 ± 0.26 °C) but exhibited individual prediction errors (percentage target attainment ± 0.40 °C = 88%) that marginally exceeded our validity criterion. Therefore, Trf3 demonstrates potential utility for group-based Tc monitoring, with additional refinement needed to extend its applicability to personalized heat strain monitoring.


Asunto(s)
Temperatura Corporal , Pabellón Auricular , Calor , Dispositivos Electrónicos Vestibles , Humanos , Masculino , Adulto , Temperatura Corporal/fisiología , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos , Pabellón Auricular/fisiología , Adulto Joven , Frecuencia Cardíaca/fisiología , Algoritmos
19.
Biomed Pharmacother ; 175: 116706, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38713944

RESUMEN

Excessive oxidative stress and NLRP3 inflammasome activation are considered the main drivers of inflammatory bowel disease (IBD), and inhibition of inflammasomes ameliorates clinical symptoms and morphological manifestations of IBD. Herein, we examined the roles of NLRP3 activation in IBD and modulation of NLRP3 by sulforaphane (SFN), a compound with multiple pharmacological activities that is extracted from cruciferous plants. To simulate human IBD, we established a mouse colitis model by administering dextran sodium sulfate in the drinking water. SFN (25, 50 mg·kg-1·d-1, ig) or the positive control sulfasalazine (500 mg/kg, ig) was administered to colitis-affected mice for 7 days. Model mice displayed pathological alterations in colon tissue as well as classic symptoms of colitis beyond substantial tissue inflammation. Expression of NLRP3, ASC, and caspase-1 was significantly elevated in the colonic epithelium. The expression of NLRP3 inflammasomes led to activation of downstream proteins and increases in the cytokines IL-18 and IL-1ß. SFN administration either fully or partially reversed these changes, thus restoring IL-18 and IL-1ß, substantially inhibiting NLRP3 activation, and decreasing inflammation. SFN alleviated the inflammation induced by LPS and NLRP3 agonists in RAW264.7 cells by decreasing the levels of reactive oxygen species. In summary, our results revealed the pathological roles of oxidative stress and NLRP3 in colitis, and indicated that SFN might serve as a natural NLRP3 inhibitor, thereby providing a new strategy for alternative colitis treatment.


Asunto(s)
Colitis Ulcerosa , Modelos Animales de Enfermedad , Inflamasomas , Isotiocianatos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Estrés Oxidativo , Sulfóxidos , Animales , Isotiocianatos/farmacología , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sulfóxidos/farmacología , Estrés Oxidativo/efectos de los fármacos , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/metabolismo , Colitis Ulcerosa/patología , Colitis Ulcerosa/inducido químicamente , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Ratones , Masculino , Sulfato de Dextran , Colon/efectos de los fármacos , Colon/patología , Colon/metabolismo , Células RAW 264.7
20.
Acta Pharmacol Sin ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38811775

RESUMEN

Proprotein convertase subtilisin/kexin type 9 (PCSK9) binds to the epidermal growth factor precursor homologous domain A (EGF-A) of low-density lipoprotein receptor (LDLR) in the liver and triggers the degradation of LDLR via the lysosomal pathway, consequently leading to an elevation in plasma LDL-C levels. Inhibiting PCSK9 prolongs the lifespan of LDLR and maintains cholesterol homeostasis in the body. Thus, PCSK9 is an innovative pharmacological target for treating hypercholesterolemia and atherosclerosis. In this study, we discovered that E28362 was a novel small-molecule PCSK9 inhibitor by conducting a virtual screening of a library containing 40,000 compounds. E28362 (5, 10, 20 µM) dose-dependently increased the protein levels of LDLR in both total protein and the membrane fraction in both HepG2 and AML12 cells, and enhanced the uptake of DiI-LDL in AML12 cells. MTT assay showed that E28362 up to 80 µM had no obvious toxicity in HepG2, AML12, and HEK293a cells. The effects of E28362 on hyperlipidemia and atherosclerosis were evaluated in three different animal models. In high-fat diet-fed golden hamsters, administration of E28362 (6.7, 20, 60 mg·kg-1·d-1, i.g.) for 4 weeks significantly reduced plasma total cholesterol (TC), triglyceride (TG), low-density lipoprotein-cholesterol (LDL-C) and PCSK9 levels, and reduced liver TC and TG contents. In Western diet-fed ApoE-/- mice (20, 60 mg·kg-1·d-1, i.g.) and human PCSK9 D374Y overexpression mice (60 mg·kg-1·d-1, i.g.), administration of E28362 for 12 weeks significantly decreased plasma LDL-C levels and the area of atherosclerotic lesions in en face aortas and aortic roots. Moreover, E28362 significantly increased the protein expression level of LDLR in the liver. We revealed that E28362 selectively bound to PCSK9 in HepG2 and AML12 cells, blocked the interaction between LDLR and PCSK9, and induced the degradation of PCSK9 through the ubiquitin-proteasome pathway, which finally resulted in increased LDLR protein levels. In conclusion, E28362 can block the interaction between PCSK9 and LDLR, induce the degradation of PCSK9, increase LDLR protein levels, and alleviate hyperlipidemia and atherosclerosis in three distinct animal models, suggesting that E28362 is a promising lead compound for the treatment of hyperlipidemia and atherosclerosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...