Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 4177, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35853940

RESUMEN

Soft magneto-active machines capable of magnetically controllable shape-morphing and locomotion have diverse promising applications such as untethered biomedical robots. However, existing soft magneto-active machines often have simple structures with limited functionalities and do not grant high-throughput production due to the convoluted fabrication technology. Here, we propose a facile fabrication strategy that transforms 2D magnetic sheets into 3D soft magneto-active machines with customized geometries by incorporating origami folding. Based on automated roll-to-roll processing, this approach allows for the high-throughput fabrication of soft magneto-origami machines with a variety of characteristics, including large-magnitude deploying, sequential folding into predesigned shapes, and multivariant actuation modes (e.g., contraction, bending, rotation, and rolling locomotion). We leverage these abilities to demonstrate a few potential applications: an electronic robot capable of on-demand deploying and wireless charging, a mechanical 8-3 encoder, a quadruped robot for cargo-release tasks, and a magneto-origami arts/craft. Our work contributes for the high-throughput fabrication of soft magneto-active machines with multi-functionalities.


Asunto(s)
Locomoción , Rotación
2.
Soft Matter ; 18(32): 5939-5948, 2022 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-35861160

RESUMEN

Controlling topological defects in liquid crystals (LCs) is an essential element in the development of areas such as directed self-assembly and micropatterning materials. However, during the phase transition on confined patterned surfaces, how the morphologies in one liquid crystalline phase change from deformations or defects into another phase is much less known. Here, we examine the fate of defects in a LC confined on a patterned surface during smectic-A-nematic and nematic-isotropic phase transitions, using experiments and simulation analyses. Upon heating from smectic-A to nematic, a Toric focal conical domain (TFCD) melts into a +1 converging boojum defect, which then transitioned into a concentric configuration as temperature increases, attributed to a steeper decrease of the bend and twist modulus compared to splay modulus. During cooling, TFCDs are developed from two distinct pathways depending on the cooling rates. Our continuum simulation recapitulates these transformations and provides elastic constant-based explanations for the two pathways. Although the phase transition pathways of defects are independent of the geometry of the confined patterns, the arrangement of FCDs is highly dependent on the size and shape of the patterns. Taken together, this simple approach offers promising opportunities for tuning the micro- or nano-patterning of topological defects in liquid crystals.

3.
Adv Healthc Mater ; 11(10): e2102547, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35034429

RESUMEN

Theranostic system combined diagnostic and therapeutic modalities is critical for the real-time monitoring of disease-related biomarkers and personalized therapy. Microneedles, as a multifunctional platform, are promising for transdermal diagnostics and drug delivery. They have shown attractive properties including painless skin penetration, easy self-administration, prominent therapeutic effects, and good biosafety. Herein, an overview of the microneedles-based diagnosis, therapies, and theranostic systems is given. Four microneedles-based detection methods are concluded based on the sensing mechanism: i) electrochemistry, ii) fluorometric, iii) colorimetric, and iv) Raman methods. Additionally, robust microneedles are suitable for implantable drug delivery. Microneedles-assisted transdermal drug delivery can be primarily classified as passive, active, and responsive drug release, based on the release mechanisms. Microneedles-assisted oral and implantable drug delivery mechanisms are also presented in this review. Furthermore, the key frontier developments in microneedles-mediated theranostic systems as the major selling points are emphasized in this review. These systems are classified into open-loop and closed-loop theranostic systems based on the indirectness and directness of feedback between the transdermal diagnosis and therapy, respectively. Finally, conclusions and future perspectives for next-generation microneedles-mediated theranostic systems are also discussed. Taken together, microneedle-based systems are promising as the new avenue for diagnosis, therapy, and disease-specific closed-loop theranostic applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Medicina de Precisión , Administración Cutánea , Sistemas de Liberación de Medicamentos/métodos , Microinyecciones , Agujas , Piel
4.
Adv Sci (Weinh) ; 8(23): e2103182, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34693657

RESUMEN

Magnetically responsive structured surfaces enabling multifunctional droplet manipulation are of significant interest in both scientific and engineering research. To realize magnetic actuation, current strategies generally employ well-designed microarrays of high-aspect-ratio structure components (e.g., microcilia, micropillars, and microplates) with incorporated magnetism to allow reversible bending deformation driven by magnets. However, such magneto-responsive microarray surfaces suffer from highly restricted deformation range and poor control precision under magnetic field, restraining their droplet manipulation capability. Herein, a novel magneto-responsive shutter (MRS) design composed of arrayed microblades connected to a frame is developed for on-demand droplet manipulation. The microblades can perform two dynamical transformation operations, including reversible swing and rotation, and significantly, the transformation can be precisely controlled over a large rotation range with the highest rotation angle up to 3960°. Functionalized MRSs based on the above design, including Janus-MRS, superhydrophobic MRS (SHP-MRS) and lubricant infused slippery MRS (LIS-MRS), can realize a wide range of droplet manipulations, ranging from switchable wettability, directional droplet bounce, droplet distribution, and droplet merging, to continuous droplet transport along either straight or curved paths. MRS provides a new paradigm of using swing/rotation topographic transformation to replace conventional bending deformation for highly efficient and on-demand multimode droplet manipulation under magnetic actuation.

5.
ACS Appl Mater Interfaces ; 13(3): 4174-4184, 2021 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-33398983

RESUMEN

Four-dimensional (4D) printed magnetoactive soft material (MASM) with a three-dimensional (3D) patterned magnetization profile possesses programmable shape transformation and controllable locomotion ability, showing promising applications in actuators and soft robotics. However, typical 4D printing strategies for MASM always introduced a printing magnetic field to orient the magneto-sensitive particles in polymers. Such strategies not only increase the cooperative control complexity of a 3D printer but may also induce local agglomeration of magneto-sensitive particles, which disturbs the magnetization of the already-printed structure. Herein, we proposed a novel 4D printing strategy that coupled the traditional 3D injection printing with the origami-based magnetization technique for easy fabrication of MASM objects with a 3D patterned magnetization profile. The 3D injection printing that can rapidly create complex 3D structures and the origami-based magnetization technique that can generate the spatial magnetization profile are combined for fabrication of 3D MASM objects to yield programmable transformation and controllable locomotion. A physics-based finite element model was also developed for the design guidance of origami-based magnetization and magnetic actuation transformation of MASM. We further demonstrated the diverse functions derived from the complex shape deformation of MASM-based robots, including a bionic human hand that played "rock-paper-scissors" game, a bionic butterfly that swung the wings on the flower, and a bionic turtle that crawled on the land and swam in the water.

6.
ACS Appl Mater Interfaces ; 12(18): 21080-21087, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293863

RESUMEN

Achieving effective dropwise capture and ultrafast water transport is essential for fog harvesting. In nature, cactus uses the conical spine with microbarbs to effectively capture fog, while Sarracenia utilizes the trichome with hierarchical microchannels to quickly transport water. Herein, we combined their advantages to present a novel configuration, a spine with barbs and hierarchical channels (SBHC), for simultaneous ultrafast water transport and high-efficient fog harvesting. This bioinspired SBHC exhibited the fastest water transport ability and the highest fog harvesting efficiency in comparison with the spine with hierarchical channels (SHCs), the spine with barbs and grooves (SBG), and the spine with barbs (SB). Based on the fundamental SBHC unit, we further designed and fabricated a two-dimensional (2D) spider-web-like fog collector and a three-dimensional (3D) cactus-like fog collector using direct laser structuring and origami techniques. The 2D spider-web and 3D cactus-like fog collectors showed high-efficient fog collection capacity. We envision that this fundamental understanding and rational design strategy can be applied in fog harvesting, heat transfer, liquid manipulation, and microfluidics.


Asunto(s)
Materiales Biomiméticos/química , Agua/química , Cactaceae/química , Cobre/química , Rayos Láser , Sarraceniaceae/química , Tiempo (Meteorología) , Humectabilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...