Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nano Lett ; 24(11): 3448-3455, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38452056

RESUMEN

Unlike graphene derived from graphite, borophenes represent a distinct class of synthetic two-dimensional materials devoid of analogous bulk-layered allotropes, leading to covalent bonding within borophenes instead of van der Waals (vdW) stacking. Our investigation focuses on 665 vdW-stacking boron bilayers to uncover potential bulk-layered boron allotropes through vdW stacking. Systematic high-throughput screening and stability analysis reveal a prevailing inclination toward covalently bonded layers in the majority of boron bilayers. However, an intriguing outlier emerges in δ5 borophene, demonstrating potential as a vdW-stacking candidate. We delve into electronic and topological structural similarities between δ5 borophene and graphene, shedding light on the structural integrity and stability of vdW-stacked boron structures across bilayers, multilayers, and bulk-layered allotropes. The δ5 borophene analogues exhibit metallic properties and characteristics of phonon-mediated superconductors, boasting a critical temperature near 22 K. This study paves the way for the concept of "borophite", a long-awaited boron analogue of graphite.

2.
Artículo en Inglés | MEDLINE | ID: mdl-37922403

RESUMEN

A new technique of polarization doping was adopted to improve NO2 gas sensing properties of the polypyrrole (PPy) sensor. PPy nanosheets polarization doped with sodium dodecyl benzenesulfonate (SDBS) were synthesized by low-temperature polymerization. The semiagglomerated PPy nanosheets were well-dispersed and a large specific surface areas due to the introduction of dodecyl benzenesulfonate (DBS). The DBS doped PPy sensor shows excellent NO2 sensing performance. Polarization of sulfonate ions to PPy enhanced the adsorption ability of NO2 with the synergistic effect of NO2. The adsorption energy (-0.676 eV) and electron transfer (0.521 |e|) of PPy to NO2 increased greatly after doping. An unoccupied electron state is observed in the valence band electron structure of PPy/DBS after the adsorption of NO2 by calculations of Density Functional Theory (DFT). The intermolecular synergy between NO2 and PPy/DBS causes a strong polarization, resulting in a high polarization potential, which enhances the NO2 sensing performance of PPy sensor. It is of great significance to develop NO2 detection device based on PPy that works at room temperature.

3.
J Chem Phys ; 159(19)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-37966006

RESUMEN

Control over the two-dimensional electron gas (2DEG) in AlGaN/GaN heterostructures is crucial for their practical applications in current semiconducting devices. However, the oxide surface structures inducing 2DEG are still ambiguous because oxide-stoichiometry (OS) matching structures possess occupied surface donor states at 1.0-1.8 eV below the conduction band minimum of bulk but are usually not available in energy than electron counting (EC) rule structures. In this work, a global optimization algorithm was introduced to explore the possible oxidation structures on GaN (0001) and AlN (0001) surfaces; the method was demonstrated to be available due to the fact that the reported oxidized structures were reproduced at each stoichiometry. Interestingly, the two similar oxide structures with close energy were found in each oxide-bilayer, which can be used to clarify the experimental observations of disordered surface oxide layers below 550 °C. Additionally, new stable oxidation structures with low surface energy were proposed. Interestingly, the new OS matching structures are proposed with remarkably lower energy than EC rule structures under cation-rich and oxygen-poor conditions, which is caused by the large formation enthalpy of Al2O3 and Ga2O3. Further electronic structure calculations demonstrate that the new OS structures possess highest occupied states above the half of the gap and are the origin of 2DEG in AlGaN/GaN heterostructures.

4.
Nat Commun ; 14(1): 6318, 2023 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813839

RESUMEN

As a two-dimensional carbon allotrope, graphdiyne possesses a direct band gap, excellent charge carrier mobility, and uniformly distributed pores. Here, a surfactant-free growth method is developed to efficiently synthesize graphdiyne hollow microspheres at liquid‒liquid interfaces with a self-supporting structure, which avoids the influence of surfactants on product properties. We demonstrate that pristine graphdiyne hollow microspheres, without any additional functionalization, show a strong surface-enhanced Raman scattering effect with an enhancement factor of 3.7 × 107 and a detection limit of 1 × 10-12 M for rhodamine 6 G, which is approximately 1000 times that of graphene. Experimental measurements and first-principles density functional theory simulations confirm the hypothesis that the surface-enhanced Raman scattering activity can be attributed to an efficiency interfacial charge transfer within the graphdiyne-molecule system.

5.
Phys Chem Chem Phys ; 25(36): 24594-24602, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37664888

RESUMEN

Hydrogen production through solar water-splitting offers a clean and renewable solution to tackle the ongoing issues of energy scarcity and environmental pollution. Here, the solar water-splitting performance of the ZnGeSe2 monolayer was explored via first-principles calculations. Our calculated results reveal that the ZnGeSe2 monolayer embodies stable configurations and semiconducting properties with direct bandgaps ranging from 1.23 to 1.60 eV under the biaxial strain from -1% to +2%. The generated holes and electrons of the ZnGeSe2 monolayer are separately distributed because of the intrinsic dipole. The calculated band edges of the ZnGeSe2 monolayer are demonstrated to be favorable for solar water-splitting. Additionally, the ZnGeSe2 monolayer exhibits strong optical absorption in the whole visible region. The hydrogen and oxygen evolution reactions can be accomplished without cocatalysts. Of particular significance, the solar to hydrogen (STH) efficiency of the ZnGeSe2 monolayer reaches up to 32%, far exceeding the economic value (10%). In light of these hallmarks, the ZnGeSe2 monolayer is demonstrated as an excellent water-splitting photocatalyst.

6.
Phys Chem Chem Phys ; 25(22): 15400-15406, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37232187

RESUMEN

Elemental boron has evoked substantial interest owing to its chemical complexity in nature. It can form multicenter bonds due to its electron deficiency, which induces the formation of various stable and metastable allotropes. The search for allotropes is attractive for finding functional materials with fascinating properties. Using first-principles calculations with evolutionary structure search, we have explored boron-rich K-B binary compounds under pressure. A series of dynamically stable structures (Pmm2 KB5, Pmma KB7, Immm KB9, and Pmmm KB10) containing boron framework with open channels are predicted, which can possibly be synthesized under high pressure and high temperature conditions. After the removal of K atoms, we obtain four novel boron allotropes, o-B14, o-B15, o-B36, and o-B10, which exhibit dynamical, thermal, and mechanical stability at ambient pressure. Among them, o-B14 contains an unusual B7 pentagonal bipyramid and appears in a bonding combination of seven-center-two-electron (7c-2e) B-B π bonds, which is the first time to be identified in three-dimensional boron allotropes. Interestingly, our calculation reveals that o-B14 can act as a superconductor with a Tc value of 29.1 K under ambient conditions.

7.
Nano Lett ; 23(7): 3023-3029, 2023 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-36996421

RESUMEN

Controlling the structure of graphdiyne (GDY) is crucial for the discovery of new properties and the development of new applications. Herein, the microemulsion synthesis of GDY hollow spheres (HSs) and multiwalled nanotubes composed of ultrathin nanosheets is reported for the first time. The formation of an oil-in-water (O/W) microemulsion is found to be a key factor controlling the growth of GDY. These GDY HSs have fully exposed surfaces because of the avoidance of overlapping between nanosheets, thereby showing an ultrahigh specific surface area of 1246 m2 g-1 and potential applications in the fields of water purification and Raman sensing.

8.
Small ; 18(49): e2204197, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287088

RESUMEN

Twist-angle two-dimensional (2D) systems are attractive in their exotic and tunable properties by the formation of the moiré superlattices, allowing easy access to manipulating intrinsic electrical and thermal properties. Here, the angle-dependent thermoelectric properties of twisted bilayer black phosphorene (tbBP) by first-principles calculations are reported. The simulations show that significantly enhanced Seebeck coefficient and power factor can be achieved in p-type tbBP due to merging of the multi-valley electronic states and flat moiré bands. Moreover, the twisted layers bring in a strong anharmonic phonon scattering and thus very low lattice thermal conductivity of 4.51 W m-1  K-1 at 300 K. Consequently, a maximal ZT value can be achieved in p-type 10.11° tbBP along the armchair direction up to 0.57 and 1.06 at 300 and 500 K, respectively. The room-temperature ZT value along the zigzag direction is also significantly increased by almost 40 times compared to pristine BP when the twist angle is close to 70.68°. This work demonstrates a platform to manipulate thermoelectric performance in 2D materials by creating moiré patterns, leading tbBP as a promising eco-friendly candidate for thermoelectric applications.

9.
Anal Chem ; 94(42): 14635-14641, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36239397

RESUMEN

The construction of open hot-spot structures that facilitate the entry of analytes is crucial for surface-enhanced Raman spectroscopy. Here, metallic niobium nitride (NbN) three-dimensional (3D) hierarchical networks with open nanocavity structure are first found to exhibit a strong visible-light localized surface plasmon resonance (LSPR) effect and extraordinary surface-enhanced Raman scattering (SERS) performance. The unique nanocavity structure allows easy entry of molecules, promoting the utilization of electromagnetic hot spots. The NbN substrate has a lowest detection limit of 1.0 × 10-12 M and a Raman enhancement factor (EF) of 1.4 × 108 for contaminants. Furthermore, the NbN hierarchical networks possess outstanding environmental durability, high signal reproducibility, and detection universality. The remarkable SERS sensitivity of the NbN substrate can be attributed to the joint effect of LSPR and interfacial charge transport (CT).


Asunto(s)
Niobio , Espectrometría Raman , Espectrometría Raman/métodos , Reproducibilidad de los Resultados , Resonancia por Plasmón de Superficie/métodos
10.
ACS Nano ; 16(8): 13123-13133, 2022 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-35930704

RESUMEN

It is a major challenge to synthesize crystalline transition-metal nitride (TMN) ultrathin nanocrystals due to their harsh reaction conditions. Herein, we report that highly crystalline tungsten nitride (W2N, WN, W3N4, W2N3) nanocrystals with small size and excellent dispersibility are prepared by a mild and general in situ surface restraint-induced growth method. These ultrafine tungsten nitride nanocrystals are immobilized in ultrathin carbon layers, forming an interesting hybrid nanobelt structure. The hybrid WN/C nanobelts exhibit a strong localized surface plasmon resonance (LSPR) effect and surface-enhanced Raman scattering (SERS) effect, including a lowest detection limit of 1 × 10-12 M and a Raman enhancement factor of 6.5 × 108 comparable to noble metals, which may be one of the best records for non-noble metal SERS substrates. Moreover, they even can maintain the SERS performance in a variety of harsh environments, showing outstanding corrosion resistance, radiation resistance, and oxidation resistance, which is not available on traditional noble metal and semiconductor SERS substrates. A synergistic Raman enhancement mechanism of LSPR and interface charge transfer is found in the carbon-coated tungsten nitride substrate. A microfluidic SERS channel integrating the enrichment and detection of trace substances is constructed with the WN/C nanobelt, which realizes high-throughput dynamic SERS analysis.

11.
ACS Appl Mater Interfaces ; 14(30): 35229-35236, 2022 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-35876712

RESUMEN

Directly and quickly detecting toxic gases in the air is urgently needed in industrial production and our daily life. However, the poor gas selectivity and low sensitivity under ambient conditions limit the development of gas sensors. In this work, we demonstrate that the penta-BeP2 monolayer is an excellent toxic gas sensor by using first-principles calculations. The calculated results show that the semiconducting penta-BeP2 monolayer can chemisorb toxic gas molecules (including CO, NH3, NO, and NO2) with distinct charge transfer (-0.182 to 1.129 e) but negligibly interact with ambient gas molecules (including H2, N2, H2O, O2, and CO2), indicating high gas selectivity for primary environmental gases. The calculated I-V curves show that the penta-BeP2 monolayer exhibits a fast response with toxic gas molecules. Upon interaction with CO, NH3, NO, and NO2 molecules at a bias voltage of 0.7 V, the currents are 10.23, 14.48, 32.10, and 129.90 times that of the pristine penta-BeP2 monolayer, respectively, which induces high sensitivity values of 9.23, 13.48, 31.10, and 128.90, respectively. Moreover, the moderate adsorption energies of all toxic gas molecules guarantee that the penta-BeP2 monolayer possesses good reversibility at room temperature with a short recovery time. Herein, all of our results indicate that the penta-BeP2 monolayer could be a superior candidate for sensing toxic gases with high selectivity, sensitivity, and reversibility.

12.
Dalton Trans ; 51(24): 9369-9376, 2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35674062

RESUMEN

All-nitrogen solids, if successfully synthesized, are ideal high-energy-density materials because they store a great amount of energy and produce only harmless N2 gas upon decomposition. Currently, the only method to obtain all-nitrogen solids is to apply high pressure to N2 crystals. However, products such as cg-N tend to decompose upon releasing the pressure. Compared to covalent solids, molecular crystals are more likely to remain stable during decompression because they can relax the strain by increasing the intermolecular distances. The challenge of such a route is to find a molecular crystal that can attain a favorable phase under elevated pressure. In this work, we show, by designing a novel N16 molecule (tripentazolylamine) and examining its crystal structures under a series of pressures, that the aromatic units and high molecular symmetry are the key factors to achieving an all-nitrogen molecular crystal. Density functional calculations and structural studies reveal that this new all-nitrogen molecular crystal exhibits a particularly slow enthalpy increase with pressure due to the highly efficient crystal packing of its highly symmetric molecules. Vibration mode calculations and molecular dynamics (MD) simulations show that N16 crystals are metastable at ambient pressure and could remain inactive up to 400 K. The initial reaction steps of the decomposition are calculated by following the pathway of the concerted excision of N2 from the N5 group as revealed by the MD simulations.

13.
ACS Nano ; 16(1): 1160-1169, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-35023714

RESUMEN

Looking for high-performance substrates is an important goal of current surface enhanced Raman scattering (SERS) research. Herein, ultrathin multilayer rhenium (Re) nanosheets as a rare-earth metal substrate are found to have extraordinary SERS performance. These Re nanosheets are prepared through a convenient low-temperature molten salt strategy, and their total thickness is ∼5 nm, including 3-4 layers of ultrathin nanosheets with a thickness of only ∼1 nm. The viscosity of molten salt plays a key role in the formation of these ultrathin layered nanosheets. These nanosheets exhibit a strong and well-defined localized surface plasmon resonance (SPR) effect in the visible light region. The plasmonic Re nanosheets show excellent SERS performance with high sensitivity, chemical stability, and signal repeatability. The lowest detection limit for toxic compounds is 10-12 mol, and the corresponding Raman enhancement factor is 9.1 × 108. A composite enhancement mechanism caused by localized-SPR and charge transport has played an important role in the rare-earth-SERS. High-throughput multiassay analysis is performed on the flexible membrane assembled from the Re nanosheets, which highlights that our system is capable of rapid separation and identification of the samples containing various analytes.

14.
J Phys Chem Lett ; 13(2): 676-685, 2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35023752

RESUMEN

The pristine semimetal property of two-dimensional (2D) Dirac materials has limited their practical applications in today's electronic devices. Here we report a new type of 2D Dirac material, termed ABX3 (A = F, Cl, Br, or I; B = P or As; X = C or Si) monolayers. We demonstrate that 14 ABX3 monolayers possess good stability and high Fermi velocities. The FPC3, ClPC3, BrPC3, and FAsC3 monolayers exhibit a pristine n-type self-doping Dirac cone due to the interactions of electrons between the A-B units and C6 rings, which is beneficial for realizing high-speed carriers. Interestingly, the ClPSi3 monolayer exhibits remarkable responses to strain because a self-doping Dirac cone can be induced by relatively small in-plane biaxial strains (-5%), and the current-voltage (I-V) curves verified that the response strength is 11.57 times that of the graphene-based strain sensor at a bias of 1.10 V, indicating that the ClPSi3 monolayer could be used as a potential excellent strain sensor.

15.
Anal Chem ; 93(37): 12776-12785, 2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34493037

RESUMEN

The development of low-cost, biocompatible, and durable high-performance substrates is an urgent issue in the field of surface-enhanced Raman scattering (SERS). Herein, by reducing and exfoliating the TiO2-layered nanoplates in the gas phase, nitrogen-doped titanium monoxide (N-TiO) ultrathin nanosheets composed of 2-3 single layers with a thickness of only ∼1.2 nm are synthesized. Compared with pure TiO, the oxidation resistance of N-TiO is greatly improved, in which the oxidation threshold is significantly increased from 187.5 to 415.6 °C. The N-TiO ultrathin nanosheets are found to have strong surface plasmon resonance in the visible region. These ultrathin N-TiO nanosheets can be easily assembled into a large-scale flexible membrane and exhibit remarkable SERS effects. Moreover, this low-cost flexible SERS substrate combines the high durability of noble-metal substrates and the high biocompatibility of semiconductor substrates.


Asunto(s)
Espectrometría Raman , Titanio , Óxido Nítrico , Nitrógeno , Resonancia por Plasmón de Superficie
16.
Nano Lett ; 21(18): 7724-7731, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34477392

RESUMEN

The synthesis of metallic transition metal nitrides (TMNs) has traditionally been performed under harsh conditions, which makes it difficult to prepare TMNs with high surface area and porosity due to the grain sintering. Herein, we report a general and rapid (30 s) microwave synthesis method for preparing TMNs with high specific surface area (122.6-141.7 m2 g-1) and porosity (0.29-0.34 cm3 g-1). Novel single-crystal porous WN, Mo2N, and V2N are first prepared by this method, which exhibits strong surface plasmon resonance, photothermal conversion, and surface-enhanced Raman scattering effects. Different from the conventional low-temperature microwave absorbing media such as water and polymers, as new concept absorbing media, hydrated metal oxides and metallic metal oxides are found to have a remarkable high-temperature microwave heating effect and play key roles in the formation of TMNs. The current research results provide a new-concept microwave method for preparing high lattice energy compounds with high specific surface.

17.
Nano Lett ; 21(10): 4410-4414, 2021 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-33970632

RESUMEN

γ-Mo2N and δ-MoN are the two most important molybdenum nitrides, but controllable preparation of them with high surface area has not been achieved. Herein, we achieved selective preparation of γ-Mo2N and δ-MoN. The key factor for the selective preparation of γ-Mo2N and δ-MoN is to control the crystal phase of the precursor MoO3. In H2O and NH3 mixed gas, the α-MoO3 nanoribbons are nitridated to obtain γ-Mo2N single-crystal porous nanobelts, while the h-MoO3 prisms are nitrided to obtain δ-MoN hierarchical porous columns. The corrosion effect of H2O plays a key role in the formation of single-crystal porous structure. The γ-Mo2N flexible membrane composed of the single-crystal porous nanobelts exhibits strong localized surface plasmon resonance and surface enhanced Raman scattering effect, which show highly sensitive response to polychlorinated phenol.

18.
ACS Appl Mater Interfaces ; 13(16): 18800-18808, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33848137

RESUMEN

GeP3 materials are attracting broad research interest due to their typical puckered layer structure, high carrier mobility, and chemical stability. This peculiarity expedites the independent control of anisotropic electrical and thermal conductance, which is thus expected to possess great thermoelectric potential. Nevertheless, the metal characteristics of GeP3 in the bulk and thick films are adverse to real application because of the low Seebeck coefficient. Thus, it is highly desirable to explore effective solutions to broaden the band gap and also maintain its excellent electrical conductance. Herein, we designed the interlaced GeP3/hexagonal boron nitride (h-BN) bulk heterostructure using various component thicknesses. By using ab initio calculations based on the Boltzmann transport theory, we found that capping h-BN layer can obviously increase the band gap of the GeP3 layer by 0.24 eV, and more interestingly, the anisotropic electronic structure in the GeP3/h-BN heterostructure was accordingly modulated toward a favorable direction for high thermoelectricity. An ultrahigh ZT value of around 5 was predicted at 300 K in p-type GeP3/h-BN, attributed to the adjusted multivalley band structure. Overall, our work provided an effective route to design novel high-performance thermoelectrics through the appropriate construction of heterostructures.

19.
Nat Commun ; 12(1): 1376, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33654080

RESUMEN

Transition metal nitrides have been widely studied due to their high electrical conductivity and excellent chemical stability. However, their preparation traditionally requires harsh conditions because of the ultrahigh activation energy barrier they need to cross in nucleation. Herein, we report three-dimensional porous VN, MoN, WN, and TiN with high surface area and porosity that are prepared by a general and mild molten-salt route. Trace water is found to be a key factor for the formation of these porous transition metal nitrides. The porous transition metal nitrides show hydrophobic surface and can adsorb a series of organic compounds with high capacity. Among them, the porous VN shows strong surface plasmon resonance, high conductivity, and a remarkable photothermal conversion efficiency. As a new type of corrosion- and radiation-resistant surface-enhanced Raman scattering substrate, the porous VN exhibits an ultrasensitive detection limit of 10-11 M for polychlorophenol.

20.
ACS Omega ; 5(38): 24946-24953, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33015514

RESUMEN

Recently, it has been reported that high-pressure synthesized lithium pentazolates could be quenched down to ambient conditions. However, the crystalline structures of LiN5 under ambient conditions are still ambiguous. In this work, the structures of LiN5 compound were directly explored at atmospheric pressure by using a new constrain structure search method. By using this method, three new allotropes were confirmed, and they show lower energy than the previous reported LiN5 phases. Both their thermodynamic and dynamic stability were confirmed through formation enthalpies, phonon spectrum, and ab initio molecular dynamics simulations under ambient conditions. Moreover, these three allotropes show similar formation enthalpies and properties, which suggests that it is hard to obtain a single LiN5 phase, which is well consistent with the experimental phenomenon. Furthermore, because of their low formation energy, all of them possess low energy density when they directly decompose to Li3N and nitrogen (0.52 kJ/g). Instead, the decomposed energy could be further improved to 3.78 kJ/g when they decompose under an oxygen-rich environment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...