Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 128(11): 4924-4937, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30130254

RESUMEN

Mutant KRAS drives glycolytic flux in lung cancer, potentially impacting aberrant protein glycosylation. Recent evidence suggests aberrant KRAS drives flux of glucose into the hexosamine biosynthetic pathway (HBP). HBP is required for various glycosylation processes, such as protein N- or O-glycosylation and glycolipid synthesis. However, its function during tumorigenesis is poorly understood. One contributor and proposed target of KRAS-driven cancers is a developmentally conserved epithelial plasticity program called epithelial-mesenchymal transition (EMT). Here we showed in novel autochthonous mouse models that EMT accelerated KrasG12D lung tumorigenesis by upregulating expression of key enzymes of the HBP pathway. We demonstrated that HBP was required for suppressing KrasG12D-induced senescence, and targeting HBP significantly delayed KrasG12D lung tumorigenesis. To explore the mechanism, we investigated protein glycosylation downstream of HBP and found elevated levels of O-linked ß-N-acetylglucosamine (O-GlcNAcylation) posttranslational modification on intracellular proteins. O-GlcNAcylation suppressed KrasG12D oncogene-induced senescence (OIS) and accelerated lung tumorigenesis. Conversely, loss of O-GlcNAcylation delayed lung tumorigenesis. O-GlcNAcylation of proteins SNAI1 and c-MYC correlated with the EMT-HBP axis and accelerated lung tumorigenesis. Our results demonstrated that O-GlcNAcylation was sufficient and required to accelerate KrasG12D lung tumorigenesis in vivo, which was reinforced by epithelial plasticity programs.


Asunto(s)
Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias Pulmonares/enzimología , Mutación Missense , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Células A549 , Acilación , Sustitución de Aminoácidos , Animales , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/patología , Femenino , Glucosa/genética , Glucosa/metabolismo , Células HEK293 , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Ratones , Ratones Desnudos , Ratones Transgénicos , Proteínas Proto-Oncogénicas p21(ras)/genética
2.
Cell Stress Chaperones ; 18(5): 535-58, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23620203

RESUMEN

O-linked N-acetyl-ß-D-glucosamine (O-GlcNAc) is a ubiquitous and dynamic post-translational modification known to modify over 3,000 nuclear, cytoplasmic, and mitochondrial eukaryotic proteins. Addition of O-GlcNAc to proteins is catalyzed by the O-GlcNAc transferase and is removed by a neutral-N-acetyl-ß-glucosaminidase (O-GlcNAcase). O-GlcNAc is thought to regulate proteins in a manner analogous to protein phosphorylation, and the cycling of this carbohydrate modification regulates many cellular functions such as the cellular stress response. Diverse forms of cellular stress and tissue injury result in enhanced O-GlcNAc modification, or O-GlcNAcylation, of numerous intracellular proteins. Stress-induced O-GlcNAcylation appears to promote cell/tissue survival by regulating a multitude of biological processes including: the phosphoinositide 3-kinase/Akt pathway, heat shock protein expression, calcium homeostasis, levels of reactive oxygen species, ER stress, protein stability, mitochondrial dynamics, and inflammation. Here, we will discuss the regulation of these processes by O-GlcNAc and the impact of such regulation on survival in models of ischemia reperfusion injury and trauma hemorrhage. We will also discuss the misregulation of O-GlcNAc in diseases commonly associated with the stress response, namely Alzheimer's and Parkinson's diseases. Finally, we will highlight recent advancements in the tools and technologies used to study the O-GlcNAc modification.


Asunto(s)
Acetilglucosamina/metabolismo , Acetilglucosamina/aislamiento & purificación , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Animales , Calcio/metabolismo , Proteínas de Choque Térmico/metabolismo , Humanos , Mitocondrias/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , beta-N-Acetilhexosaminidasas/metabolismo
3.
PLoS Pathog ; 6(12): e1001226, 2010 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-21187912

RESUMEN

Introduced in the 1950s, ethidium bromide (EB) is still used as an anti-trypanosomal drug for African cattle although its mechanism of killing has been unclear and controversial. EB has long been known to cause loss of the mitochondrial genome, named kinetoplast DNA (kDNA), a giant network of interlocked minicircles and maxicircles. However, the existence of viable parasites lacking kDNA (dyskinetoplastic) led many to think that kDNA loss could not be the mechanism of killing. When recent studies indicated that kDNA is indeed essential in bloodstream trypanosomes and that dyskinetoplastic cells survive only if they have a compensating mutation in the nuclear genome, we investigated the effect of EB on kDNA and its replication. We here report some remarkable effects of EB. Using EM and other techniques, we found that binding of EB to network minicircles is low, probably because of their association with proteins that prevent helix unwinding. In contrast, covalently-closed minicircles that had been released from the network for replication bind EB extensively, causing them, after isolation, to become highly supertwisted and to develop regions of left-handed Z-DNA (without EB, these circles are fully relaxed). In vivo, EB causes helix distortion of free minicircles, preventing replication initiation and resulting in kDNA loss and cell death. Unexpectedly, EB also kills dyskinetoplastic trypanosomes, lacking kDNA, by inhibiting nuclear replication. Since the effect on kDNA occurs at a >10-fold lower EB concentration than that on nuclear DNA, we conclude that minicircle replication initiation is likely EB's most vulnerable target, but the effect on nuclear replication may also contribute to cell killing.


Asunto(s)
ADN de Cinetoplasto/efectos de los fármacos , Etidio/farmacología , Trypanosoma/efectos de los fármacos , Antiprotozoarios/farmacología , Replicación del ADN/efectos de los fármacos , ADN de Forma Z , Genoma Mitocondrial/efectos de los fármacos , Conformación de Ácido Nucleico , Trypanosoma brucei brucei , Tripanosomiasis Africana
4.
J Biol Chem ; 285(10): 7056-66, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20042610

RESUMEN

Kinetoplast DNA, the trypanosome mitochondrial genome, is a network of interlocked DNA rings including several thousand minicircles and a few dozen maxicircles. Minicircles replicate after release from the network, and their progeny reattach. Remarkably, trypanosomes have six mitochondrial DNA helicases related to yeast PIF1 helicase. Here we report that one of the six, TbPIF1, functions in minicircle replication. RNA interference (RNAi) of TbPIF1 causes a growth defect and kinetoplast DNA loss. Minicircle replication intermediates decrease during RNAi, and there is an accumulation of multiply interlocked, covalently closed minicircle dimers (fraction U). In studying the significance of fraction U, we found that this species also accumulates during RNAi of mitochondrial topoisomerase II. These data indicate that one function of TbPIF1 is an involvement, together with topoisomerase II, in the segregation of minicircle progeny.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , ADN de Cinetoplasto/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei , Adenosina Trifosfato/metabolismo , Animales , ADN Helicasas/genética , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN de Cinetoplasto/genética , Mitocondrias/enzimología , Mitocondrias/genética , Proteínas Mitocondriales/genética , Datos de Secuencia Molecular , Proteínas Protozoarias/genética , Interferencia de ARN , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Trypanosoma brucei brucei/enzimología , Trypanosoma brucei brucei/genética
5.
PLoS Pathog ; 5(9): e1000589, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19779567

RESUMEN

Trypanosoma brucei's mitochondrial genome, kinetoplast DNA (kDNA), is a giant network of catenated DNA rings. The network consists of a few thousand 1 kb minicircles and several dozen 23 kb maxicircles. Here we report that TbPIF5, one of T. brucei's six mitochondrial proteins related to Saccharomyces cerevisiae mitochondrial DNA helicase ScPIF1, is involved in minicircle lagging strand synthesis. Like its yeast homolog, TbPIF5 is a 5' to 3' DNA helicase. Together with other enzymes thought to be involved in Okazaki fragment processing, TbPIF5 localizes in vivo to the antipodal sites flanking the kDNA. Minicircles in wild type cells replicate unidirectionally as theta-structures and are unusual in that Okazaki fragments are not joined until after the progeny minicircles have segregated. We now report that overexpression of TbPIF5 causes premature removal of RNA primers and joining of Okazaki fragments on theta structures. Further elongation of the lagging strand is blocked, but the leading strand is completed and the minicircle progeny, one with a truncated H strand (ranging from 0.1 to 1 kb), are segregated. The minicircles with a truncated H strand electrophorese on an agarose gel as a smear. This replication defect is associated with kinetoplast shrinkage and eventual slowing of cell growth. We propose that TbPIF5 unwinds RNA primers after lagging strand synthesis, thus facilitating processing of Okazaki fragments.


Asunto(s)
ADN Helicasas/metabolismo , ADN/metabolismo , Proteínas Protozoarias/metabolismo , Trypanosoma brucei brucei/enzimología , Adenosina Trifosfatasas/metabolismo , ADN/química , ADN/genética , ADN Helicasas/genética , Cartilla de ADN , ADN de Cinetoplasto/química , ADN de Cinetoplasto/metabolismo , Técnicas de Inactivación de Genes , Microscopía Electrónica , Microscopía Fluorescente , Microscopía de Contraste de Fase , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Protozoarias/genética , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/genética
6.
J Biol Chem ; 281(27): 18499-506, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16690608

RESUMEN

The mitochondrial genome of trypanosomes, termed kinetoplast DNA (kDNA), contains thousands of minicircles and dozens of maxicircles topologically interlocked in a network. To identify proteins involved in network replication, we screened an inducible RNA interference-based genomic library for cells that lose kinetoplast DNA. In one cloned cell line with inducible kinetoplast DNA loss, we found that the RNA interference vector had aberrantly integrated into the genome resulting in overexpression of genes down-stream of the integration site (Motyka, S. A., Zhao, Z., Gull, K., and Englund, P. T. (2004) Mol. Biochem. Parasitol. 134, 163-167). We now report that the relevant overexpressed gene encodes a mitochondrial cytochrome b(5) reductase-like protein. This overexpression caused kDNA loss by oxidation/inactivation of the universal minicircle sequence-binding protein, which normally binds the minicircle replication origin and triggers replication. The rapid loss of maxicircles suggests that the universal minicircle sequence-binding protein might also control maxicircle replication. Several lines of evidence indicate that the cytochrome b(5) reductase-like protein controls the oxidization status of the universal minicircle sequence-binding protein via tryparedoxin, a mitochondrial redox protein. For example, overexpression of mitochondrial tryparedoxin peroxidase, which utilizes tryparedoxin, also caused oxidation of the universal minicircle sequence-binding protein and kDNA loss. Furthermore, the growth defect caused by overexpression of cytochrome b(5) reductase-like protein could be partially rescued by simultaneously overexpressing tryparedoxin.


Asunto(s)
ADN de Cinetoplasto/metabolismo , Proteínas Protozoarias/biosíntesis , Trypanosoma brucei brucei/genética , Animales , Citocromo-B(5) Reductasa/biosíntesis , Citocromo-B(5) Reductasa/genética , Replicación del ADN , Regulación de la Expresión Génica , Oxidación-Reducción , Proteínas Protozoarias/genética , Tiorredoxinas/biosíntesis , Trypanosoma brucei brucei/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...