Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 323
Filtrar
1.
J Prosthodont ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023016

RESUMEN

PURPOSE: The present study evaluated the effects of the root portion design, segment (middle vs. apical), and part (die vs. cast) on the trueness of three-dimensional (3D)-printed removable die-cast complex. MATERIAL AND METHODS: The trueness of apical and middle segments of the root portion of 45 3D-printed removable dies and casts with three different root portion designs (n = 15) was assessed using a metrology-grade computer program. The three removable dies and cast designs (root form [RF], conical [CON], and cylindric [CYL]) were created using professional computer-aided manufacturing computer programs (DentalCAD 3.1 Rijeka, and InLab CAD 22.0), and manufactured using stereolithographic 3D printer (Form3; FormLabs, Somerville, MA). Subsequently, the 3D-printed removable dies and casts were scanned by a single operator with an intraoral scanner (PrimeScan; Dentsply Sirona, Charlotte, NC), and their respective standard tessellation language files were aligned and compared to master reference files in a metrology-grade computer program (Geomagic Control X; 3D systems, Rock Hill, NC). The root mean square (RMS) values of the middle and apical segments for each removable die and cast were calculated and analyzed using a mixed model including a repeated measure 3-way analysis of variance (ANOVA) and post-hoc stepdown Bonferroni-corrected pairwise comparisons (α = 0.05). RESULTS: A statistically significant 3-way interaction between factors was detected, suggesting that the part (removable die or alveolar cast) and their design affected the RMS values of their apical and middle root portion segment. (p = 0.045). The post-hoc analysis identified significant differences between RMS values of the apical segments of the CON and CYL removable dies (p = 0.005). Significant differences were observed between the middle and apical segments of the CON (p < 0.001) and RF removable die designs (p = 0.004). No statistically significant differences were noticed between the RMS of the different alveolar cast designs (p > 0.05). Significant differences were detected between the apical and middle segments of the same alveolar cast design (p < 0.05). CONCLUSIONS: For the manufacturing trinomial and 3D printing strategy used in the present study, the interaction of the part, design, and segment affected the trueness of removable dies and alveolar casts. The trueness was higher on the middle segment on removable dies and alveolar casts in all designs used, except for CYL removable dies, where the trueness difference between segments was small. Higher trueness values may be achieved with designs with simple apical segment geometries.

2.
J Endourol ; 2024 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-39001818

RESUMEN

Introduction Ultrasound-guided puncture has the benefits of avoiding radiation and limiting the risk of visceral injury. We aimed to evaluate the results of two different renal access techniques during pediatric supine mini PCNL (smPCNL) in a comparative manner. Patients and Methods Data obtained from pediatric patients undergoing smPCNL by single surgeon between September 2021-2023 were reviewed retrospectively. Children were divided into two groups namely; biplanar 0-90° fluoroscopy (Group-F) and ultrasound-fluoroscopy combined (Group-C). In all cases preoperative,operative and post-operative findings were recorded. Success was defined as the determination of either no (complete stone-free status) or < 4mm residual fragments (CIRF) on ultrasound and X-ray (postoperative 3rd month) images. Complications were evaluated according to modified Clavien-Dindo classification. Results Data of 54 patients with a mean age of 8,6 years (Group-F=30, Group-C=24) are reviewed. In addition to the similar success rates in both groups (Group-F=86.7% Group-C=87.5% p=0.928), similar minor complications were noted in the majority of the cases. No child required transfusion and/or angioembolization. Although the fluoroscopy and operation time were lower in Group-C, the difference was not statistically significant. Conclusion Ultrasound-fluoroscopy combined access technique can be applied with similar success and complication rates in pediatric smPCNL.Ultimately, as experience is gained, this technique may lower radiation exposure, although this was not observed in the current study.

3.
J Adv Prosthodont ; 16(3): 139-150, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38957291

RESUMEN

PURPOSE: The purpose of this diagnostic study was to assess the accuracy and time efficiency of a digital method to draw the denture foundation extension outline on preliminary casts compared with the conventional technique. MATERIALS AND METHODS: A total of 28 preliminary edentulous casts with no anatomical landmarks were digitized using a laboratory scanner. The outlining of the entire basal seat of the denture was performed on preliminary casts and digitized. Casts with no extension outline were digitized and outlines were drawn using software (DWOS, Straumann). The accuracy of the extension outlined between both techniques was evaluated in the software (GOM Inspect; GOM GmbH) by file superimposition. Specificity and sensitivity tests were applied to measure accuracy. The paired t-test (95% CI) was used to compare the mean total area and the working time. RESULTS: The accuracy ranged from 0.57 to 0.92. The buccal and labial frenulum showed a lower value in the maxilla (0.57); while the area between the retromolar pad and buccal frenulum (0.64) showed a lower score in the mandible. The maxillary denture foundation and the working time for both arches were significantly longer for the digital method (P < .001). CONCLUSION: The denture foundation extension outline exhibited a sufficiently excellent accuracy for the digital method, except for the maxillary anterior region. However, the digital method required a longer working time.

4.
J Prosthet Dent ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38960755

RESUMEN

STATEMENT OF PROBLEM: The impact of various preparation designs on the fracture resistance and fracture type of mandibular premolars restored with 3 dimensionally (3D) printed, 1-piece endodontic crowns remains unclear. PURPOSE: The purpose of this study was to investigate the effect of different preparation designs on the fracture resistance and fracture patterns of mandibular premolars restored with 3D printed 1-piece endodontic crowns after thermal aging. MATERIAL AND METHODS: Forty-five freshly extracted mandibular premolars received 3 different preparation designs: with at least 2 intact cuspal walls (2CW), with only 1 intact cuspal wall (1CW), and no cuspal wall present (NoCW). One-piece endodontic crowns were designed by using a computer-aided design (CAD) software program, 3D printed, cemented to the prepared teeth with self-adhesive resin cement, and thermocycled between 5 °C and 55 °C in artificial saliva. Subsequently, all specimens were subjected to a fracture test. The results were statistically analyzed using 1-way ANOVA (α=.05), and fracture types of all specimens were examined using a light microscope. RESULTS: The analysis of fracture resistance values across separate designs revealed no statistically significant differences (P>.05). Mean fracture resistance values were 724.5 N in 2CW, 713 N in 1CW, and 861 N in NoCW. In 2CW and 1CW, the 1-piece endodontic crowns mostly displayed Type III fractures, whereas those in NoCW exhibited a combination of Type II and Type III fractures. CONCLUSIONS: The mandibular premolar 1-piece endodontic crowns tested in this study exhibited similar fracture resistance and type of fracture with different preparation designs.

5.
J Prosthodont ; 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953541

RESUMEN

PURPOSE: To assess the accuracy of complete maxillary and mandibular edentulous arch scans obtained using two different intraoral scanners (IOSs), with and without scanning aids, and to compare these results to those obtained using conventional impression methods. MATERIALS AND METHODS: Two IOSs were used (TRIOS 4 [TRI] and Emerald S [EMR]) to scan maxillary and mandibular typodonts. The typodonts were scanned without scanning aids [TRI_WSA and EMR_WSA groups] (n = 10). The typodonts were then scanned under four scanning aid conditions (n = 10): composite markers [TRI_MRK and EMR_MRK groups], scanning spray [TRI_SPR and EMR_SPR groups], pressure indicating paste [TRI_PIP and EMR_PIP groups], and liquid-type scanning aid [TRI_LQD and EMR_LQD groups]. Conventional impressions of both arches were also made using irreversible hydrocolloids in stock trays [IHC] and using polyvinyl siloxane (PVS) impression material in custom trays (n = 10) which were digitized using a laboratory scanner. Using a metrology software program, all scans were compared to a reference scan in order to assess trueness and to each other to assess precision. Trueness and precision were expressed as the root mean square (RMS) of the absolute deviation values and the statistical analysis was modeled on a logarithmic scale using fixed-effects models to meet model assumptions (α = 0.05). RESULTS: The main effect of arch (p = 0.004), scanner (p < 0.001), scanning aid (p = 0.041), and the interaction between scanner and scanning aid (p = 0.027) had a significant effect on mean RMS values of trueness. The arch (p = 0.015) and scanner (p < 0.001) had a significant effect on the mean RMS values of precision. The maxillary arch had better accuracy compared to the mandible. The TRIOS 4 scanner had better accuracy than both the Emerald S scanner and conventional impressions. The Emerald S had better precision than conventional impressions. The scanning spray and liquid-type scanning aids produced the best trueness with the TRIOS 4 scanner, while the liquid-type scanning aid and composite markers produced the best trueness for the Emerald S scanner. CONCLUSION: The scanned arch and the type of scanner had a significant effect on the accuracy of digital scans of completely edentulous arches. The scanning aid had a significant effect on the trueness of digital scans of completely edentulous arches which varied depending on the scanner used.

6.
J Prosthet Dent ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38955603

RESUMEN

STATEMENT OF PROBLEM: Additive and subtractive manufacturing have become alternative technologies for fabricating occlusal devices. However, knowledge of the long-term stability of occlusal devices fabricated using these recent technologies is limited. PURPOSE: The purpose of this in vitro study was to evaluate the cameo and intaglio surface stability and variability of additively, subtractively, and conventionally manufactured occlusal devices after 18 months of storage. MATERIAL AND METHODS: A standard tessellation language (STL) file of a dentate maxillary typodont was used to design a master occlusal device. The STL file of this design was used to fabricate occlusal devices additively either with a digital light processing (AM-1) or a continuous liquid interface production (AM-2) printer, subtractively with 2 different 5-axis milling units (SM-1 and SM-2), and conventionally (TM-HP) (n=10). STL files of each device's cameo and intaglio surfaces were generated using a laboratory scanner after fabrication and after 18 months of storage in a moist environment. These generated files were imported into an analysis software program (Geomagic Control X) to analyze the dimensional stability of tested devices by using the root mean square method. The average deviation values defined the variability of measured changes over time. Cameo and intaglio surface deviations were analyzed using the Kruskal-Wallis and Dunn tests, while the variability of measured deviations was analyzed with 1-way analysis of variance and the Tukey HSD tests (α=.05). RESULTS: Significant differences were observed among tested devices when the intaglio surface deviations and the cameo surface variability were considered (P<.001). SM-2 had significantly higher intaglio surface deviations than AM-1, SM-1, and AM-2 (P≤.036). Among the test groups, AM-1 had the greatest cameo surface variability (P≤.004). CONCLUSIONS: SM-2 resulted in lower intaglio surface stability than the additive and the other subtractive manufacturing technologies, while AM-1 led to the highest cameo surface variability among the test groups.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38989676

RESUMEN

BACKGROUND: There is limited knowledge on the fabrication trueness and fit of additively or subtractively manufactured complete-arch implant-supported frameworks in recently introduced polymers. PURPOSE: To evaluate the trueness and marginal fit of additively or subtractively manufactured polymer-based complete-arch implant-supported frameworks, comparing with those of strength gradient zirconia frameworks. MATERIALS AND METHODS: A typodont model with 4 implants (left first molar (abutment 1), left canine (abutment 2), right canine (abutment 3), and right first molar (abutment 4)) was digitized (ATOS Core 80 5MP) and an implant-supported complete-arch framework was designed. This design file was used to fabricate frameworks from 5 different materials: strength gradient zirconia (SM-ZR), high impact polymer composite (SM-CR), nanographene-reinforced PMMA (SM-GR), PMMA (SM-PM), and additively manufactured temporary resin (AM) (n = 10). These frameworks were digitized and each scan file was virtually segmented into 4 regions (abutments, occlusal, overall without occlusal, and overall). The surface deviations at these regions, and linear and interimplant distance deviations were evaluated (Geomagic Control X). Marginal gaps were evaluated according to triple-scan protocol after seating frameworks on the model with the 1-screw test. Data were statistically analyzed (α = 0.05). RESULTS: Surface deviations of all regions differed among tested materials (p ≤ 0.001). AM frameworks mostly had surface deviations that were similar to or lower than those of other materials (p ≤ 0.031), except for the occlusal surface, where it mostly had higher deviations (p ≤ 0.013). Abutment 4 of SM-CR had higher linear deviations than abutment 2 (p = 0.025), and material type did not affect the linear deviations within abutments (p ≥ 0.171). Interimplant distance deviations differed within and among materials (p ≤ 0.017), except for those between abutments 1 and 2 among materials (p = 0.387). Marginal gaps of subtractively manufactured materials differed among abutments, while those of abutments 3 and 4 differed among materials (p ≤ 0.003). AM frameworks mostly had lower marginal gaps at abutments 3 and 4 (p ≤ 0.048). CONCLUSIONS: Although there was no clear trend among tested materials for measured deviations, marginal gaps of additively manufactured resin were mostly lower than those of subtractively manufactured materials and did not differ among abutment sites. Nevertheless, the differences in measured deviations among materials were small and marginal gaps were within the previously reported acceptability thresholds.

8.
J Prosthet Dent ; 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38890060

RESUMEN

STATEMENT OF PROBLEM: Studies on the effect of barium silicate on the material properties of additively manufactured (AM) resins containing 2-methacryloyloxyethyl phosphorylcholine (MPC) for dental applications are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the mechanical properties, transmittance, and protein adsorption of MPC-containing AM resin incorporated with different barium silicate contents and to compare these findings with those of a commercially available unfilled AM resin marketed for definitive restorations. MATERIAL AND METHODS: Resins incorporating 6 wt% MPC and 4 different concentrations of barium silicate (10 wt%, MB10; 20 wt%, MB20; 30 wt%, MB30; and 40 wt%, MB40) were prepared. An MPC-containing resin with no filler was also prepared (0 wt%, MBN). Surface roughness (n=15), Vickers hardness (n=15), flexural strength and modulus (n=15), fracture toughness (n=15), transmittance (n=15), and protein adsorption (n=3) of the filled resin specimens were measured and compared with those of commercially available unfilled resin specimens. All data were analyzed using the Kruskal-Wallis and Dunn tests (α=.05). RESULTS: All experimental resins had higher surface roughness than the unfilled resin (P≤.048). MB40 had higher hardness, flexural strength, flexural modulus, and fracture toughness than most other groups (P≤.047). MB10 had higher transmittance than most other groups (P≤.012). All experimental resins had lower protein adsorption than the unfilled resin, regardless of the barium silicate content (P≤.023). CONCLUSIONS: The experimental resin containing 6 wt% MPC and 40 wt% barium silicate showed better mechanical properties and lower protein adsorption than the resin with no MPC or ceramic fillers. Transmittance decreased with the increase of barium silicate in the resins.

9.
J Dent ; 147: 105134, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38885733

RESUMEN

OBJECTIVE: To evaluate the mechanical and biological properties of three-dimensionally (3D) printable resins filled with 2-methacryloyloxyethyl phosphorylcholine (MPC) and silicate-based composites and compare with those of a commercially available 3D-printable resin for definitive restorations. METHODS: A group of 3D-printable hybrid resins (HRs) filled with 6 wt% MPC and three different compositions of silicate-based composites (barium silicate to zirconium silicate ratios: 1.50:1 for HR1, 0.67:1 for HR2, and 0.25:1 for HR3) were prepared. The HR groups were compared with the commercially available unfilled 3D-printable resin (CR) marketed for definitive restorations in terms of flexural strength and modulus, fracture toughness, surface roughness, Vickers hardness, light transmittance (all, n = 15), cytotoxicity, and protein adsorption (both, n = 3). All data were analyzed by using non-parametric Kruskal-Wallis and Dunn's tests (α=0.05). RESULTS: The HR groups had significantly higher flexural strength, modulus, fracture toughness, and hardness values than the CR (P < 0.001). HR3 had the highest surface roughness and light transmittance among the groups (P ≤ 0.006). None of tested resins showed cytotoxicity. Both HR2 and HR3 showed significantly lower protein adsorption than the CR, with a difference of approximately 60% (P ≤ 0.026). CONCLUSION: Both HR2 and HR3 exhibited superior mechanical properties (flexural strength, flexural modulus, fracture toughness, and Vickers hardness), light transmittance, and protein-repellent activity than the CR, with no impact on cytotoxicity. CLINICAL SIGNIFICANCE: The MPC/silicate-based composite-filled resins may be a suitable alternative for definitive restorations, given their higher mechanical properties and promising biological properties to prevent microbial adhesion and subsequent biofilm formation, as well as their non-cytotoxic properties.

10.
J Dent ; 147: 105142, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906454

RESUMEN

OBJECTIVES: To compare implant supported crowns (ISCs) designed using deep learning (DL) software with those designed by a technician using conventional computer-aided design software. METHODS: Twenty resin-based partially edentulous casts (maxillary and mandibular) used for fabricating ISCs were evaluated retrospectively. ISCs were designed using a DL-based method with no modification of the as-generated outcome (DB), a DL-based method with further optimization by a dental technician (DM), and a conventional computer-aided design method by a technician (NC). Time efficiency, crown contour, occlusal table area, cusp angle, cusp height, emergence profile angle, occlusal contacts, and proximal contacts were compared among groups. Depending on the distribution of measured data, various statistical methods were used for comparative analyses with a significance level of 0.05. RESULTS: ISCs in the DB group showed a significantly higher efficiency than those in the DM and NC groups (P ≤ 0.001). ISCs in the DM group exhibited significantly smaller volume deviations than those in the DB group when superimposed on ISCs in the NC group (DB-NC vs. DM-NC pairs, P ≤ 0.008). Except for the number and intensity of occlusal contacts (P ≤ 0.004), ISCs in the DB and DM groups had occlusal table areas, cusp angles, cusp heights, proximal contact intensities, and emergence profile angles similar to those in the NC group (P ≥ 0.157). CONCLUSIONS: A DL-based method can be beneficial for designing posterior ISCs in terms of time efficiency, occlusal table area, cusp angle, cusp height, proximal contact, and emergence profile, similar to the conventional human-based method. CLINICAL SIGNIFICANCE: A deep learning-based design method can achieve clinically acceptable functional properties of posterior ISCs. However, further optimization by a technician could improve specific outcomes, such as the crown contour or emergence profile angle.

11.
J Dent ; 147: 105143, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38906456

RESUMEN

OBJECTIVES: To investigate how postpolymerization time (PPT) and atmosphere (PPA) influence the surface properties, protein adsorption, and microbial adhesion of two types of additively manufactured (AM) resins used for definitive restorations. METHODS: Two different types of commercially available AM resins for definitive restorations (UR and CR) were used to create disk-shaped specimens. These specimens were divided into eight groups based on resin type (UR and CR), PPT (standard or extended), and PPA (air or nitrogen). After postpolymerization, the surface roughness (Ra and Sa) and surface free energy (SFE) of all specimens were measured. The study also evaluated protein adsorption, microbial attachment, and cytotoxicity. A non-parametric factorial analysis of variance with post-hoc analyses was conducted, using a significance level (α) of 0.05. RESULTS: The Ra and Sa values for CR were higher than those for UR, regardless of PPT or PPA (P < 0.05). For UR, SFE was higher with extended PPT compared to standard PPT. CR had higher SFE than UR under standard PPT. The interaction between PPT and PPA had a significant effect on protein adsorption (P < 0.05). When PPT was standard, nitrogen significantly increased protein adsorption compared to air. The interaction between resin type and PPA, and between resin type and PPT, significantly affected microbial adhesion (P < 0.05). The changes in PPT or PPA did not affect the cytotoxicity of either AM resin. CONCLUSION: Surface properties, protein adsorption, and microbial attachment were influenced by the interactions among PPT, PPA, and resin type. These factors can have implications for resin-based definitive restorations. CLINICAL SIGNIFICANCES: Clinicians should understand the impact of PPT and PPA on the surface properties of AM resins for definitive restorations, particularly regarding protein adsorption and microbial adhesion. Additionally, the type of AM resin (based on chemical composition) could affect its biological properties.

12.
Dent Mater ; 40(7): 1072-1077, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777731

RESUMEN

OBJECTIVE: To evaluate how restorative material, resin cement, and cyclic loading affect the fracture resistance of resin-based crowns fabricated by using additive or subtractive manufacturing. METHODS: A right first molar crown standard tessellation language (STL) file was used to fabricate 120 crowns from one subtractively manufactured polymer-infiltrated ceramic network (SM) and two additively manufactured resin composites (AM-B and AM-S) (N = 40). These crowns were randomly divided into 4 groups within each material according to the dual-polymerizing resin cement to be used (RX and PN) and the aging condition (n = 10). After cementation, the crowns without cyclic loading were subjected to fracture testing, while the others were first cyclically loaded (1.7 Hz, 1.2 million cycles, and 49-N load) and then subjected to fracture testing. Data were analyzed with generalized linear model analysis (α = .05). RESULTS: Fracture resistance of the crowns was affected by material, resin cement, and cyclic loading (P ≤ .030). However, none of the interactions significantly affected fracture resistance of tested crowns (P ≥ .140). Among tested materials, SM had the highest fracture resistance, whereas AM-B had the lowest (P ≤ .025). RX led to higher fracture resistance, and cyclic loading decreased the fracture resistance (P ≤ .026). SIGNIFICANCE: Tested materials can be considered reliable in terms of fracture resistance in short- or mid-term (5 years of intraoral simulation) when used for single molar crowns with 2 mm occlusal thickness. In the long term, polymer-infiltrated ceramic network crowns cemented with RelyX Universal may provide promising results and be less prone to complications considering higher fracture resistance values obtained.


Asunto(s)
Resinas Compuestas , Coronas , Fracaso de la Restauración Dental , Análisis del Estrés Dental , Ensayo de Materiales , Cementos de Resina , Cementos de Resina/química , Resinas Compuestas/química , Diseño de Prótesis Dental , Cerámica/química , Diente Molar , Materiales Dentales/química
13.
Int J Prosthodont ; 37(7): 165-173, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787581

RESUMEN

PURPOSE: To investigate the impact of printing layer thickness on the optical properties and surface roughness of various 3D-printed resins manufactured by digital light processing (DLP) and indicated for provisional and definitive restorations. MATERIALS AND METHODS: A total of 240 specimens from four different 3D-printing resins-VarseoSmile Crown Plus (Bego; VS), Crowntec (Saremco Dental; CR), GC Temp PRINT (GC Dental; TG), and NextDent C&B MFH (NextDent; ND)-were divided into four groups (n = 60 per group). Each group was further divided into three subgroups (n = 20) according to printing layer thickness (25, 50, and 100 µm). All specimens were subjected to thermocycling with coffee before measurements were taken with a spectroradiometer to calculate color differences. The Kubelka-Munk (K-M) absorption (K) and scattering coefficients (S), translucency parameters (TP), and surface roughness (Ra) values were calculated for each printing layer thickness and compared with those of the 2M2 shade tab (target). The data were analyzed using Mann-Whitney U test, the variance accounted for (VAF) coefficient by Cauchy-Schwarz, and post hoc comparisons using Tukey test (α ≤ .05). RESULTS: S (79% ≤ VAF ≤ 100%) and K (40.45% ≤ VAF ≤ 100%) spectral distribution depended on the wavelength. A 25-µm layer thickness resulted in no significant differences from the 2M2 shade for S (P > .230) and K (P > .200). VS showed significantly different S (P = .004) and K (P = .003) values from those of the shade tab with 50-µm layering thickness, whereas other materials did not show significant differences from the 2M2 shade for S (P > .280) and K (P > .301). The 100-µm layer thickness specimens had significantly different S and K values compared to the 2M2 shade tab (P < .004). TP values of resins with 100-µm layer thickness were significantly lower than resins in 25- and 50-µm layer thicknesses (P < .001). The Ra values of resins increased significantly with 100-µm layer thickness (P ≤ .001). CONCLUSIONS: All tested materials, except for VS, showed color properties similar to the target shade when 25- and 50-µm printing layer thicknesses were used. The translucency of resins tended toward an inverse relationship with printing layer thickness. The surface roughness of resins increased significantly with 100-µm layer thickness. However, all resins with a printing thickness of 25 µm showed better color properties and surface roughness.


Asunto(s)
Impresión Tridimensional , Propiedades de Superficie , Ensayo de Materiales , Técnicas In Vitro , Resinas Compuestas/química , Resinas Sintéticas/química
14.
Int J Prosthodont ; 37(7): 175-185, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787582

RESUMEN

PURPOSE: To assess the manufacturing accuracy, intaglio surface adaptation, and survival of resin-based CAD/CAM definitive crowns created via additive manufacturing (AM) or subtractive manufacturing (SM). MATERIALS AND METHODS: A maxillary right first molar crown was digitally designed and manufactured using AM hybrid resin composite (VarseoSmile Crown Plus, Bego [AM-HRC]), AM glass filler-reinforced resin composite (Crowntec, Saremco Dental [AM-RC]), and SM polymer-infiltrated ceramic (Vita Enamic, VITA Zahnfabrik [SM-PICN]). Manufacturing accuracy (trueness and precision) was assessed by computing the root mean square (RMS) error (in µm; n = 15 per material). Intaglio surface adaptation was assessed by calculating the average gap distance (µm). Ten crowns from each group were cemented on fiberglass-reinforced epoxy resin dies and cyclically loaded to simulate 5 years of functional loading. One-way ANOVA, post hoc Bonferroni comparison tests, and Levene's test were used to analyze the data (α = .05). RESULTS: AM-RC had higher overall trueness than AM-HRC and SM-PICN (P ≤ .05), whereas the trueness of AM-RC on the external surface was similar to that of SM-PICN (P = .99) and higher than AM-HRC (P = .001). SM-PICN had lower precision than AM-RC and AM-HRC overall and at internal occlusal surfaces (P ≤ .05). Overall intaglio surface adaptation was similar between all groups (P = .531). However, for the axial intaglio surface, AM-RC and AM-HRC had higher adaptation than SM-PICN (P ≤ .05). All tested crowns survived the cyclic loading simulation of 5 years clinical use. CONCLUSIONS: AM-RC showed high manufacturing accuracy and adaptation. The tested resin-based CAD/CAM materials demonstrated clinically acceptable manufacturing accuracy and simulated medium-term durability, justifying the initiation of clinical investigations to determine their potential implementation in daily clinical practice.


Asunto(s)
Resinas Compuestas , Diseño Asistido por Computadora , Coronas , Diseño de Prótesis Dental , Técnicas In Vitro , Resinas Compuestas/química , Humanos , Adaptación Marginal Dental , Propiedades de Superficie , Ensayo de Materiales , Análisis del Estrés Dental , Cerámica/química , Diente Molar
15.
Int J Prosthodont ; 37(7): 275-284, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787592

RESUMEN

Artificial intelligence (AI) has been expanding into areas that were thought to be reserved for human experts and has a tremendous potential to improve patient care and revolutionize the healthcare field. Recently launched AI-powered dental design solutions enable automated occlusal device design. This article describes a dental method for the complete digital workflow for occlusal device fabrication using two different AIpowered design software programs (Medit Splints and 3Shape Automate) and additive manufacturing. Additionally, the benefits and drawbacks of this workflow were reviewed and compared to conventional workflows.


Asunto(s)
Inteligencia Artificial , Diseño Asistido por Computadora , Programas Informáticos , Flujo de Trabajo , Humanos , Diseño de Prótesis Dental , Ferulas Oclusales
16.
Int J Prosthodont ; 37(7): 265-273, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38787591

RESUMEN

OBJECTIVES: To compare the positional trueness of implant-crown bonding to titanium bases (Ti-bases) using different bonding protocols. MATERIALS AND METHODS: A nonprecious alloy model with a single implant at the mandibular right first molar site was digitized, then a single implant crown was designed. The crown was milled, adhesively cemented on a Ti-base, and screw-retained on the implant in the master model to obtain a reference scan. Forty PMMA implant crowns were subtractively manufactured and allocated to one of four study groups (n = 10 crowns per group) based on the bonding protocol on Ti-bases: Group 1 = modelfree bonding; Group 2 = bonding on the master model (control); Group 3 = bonding on a model from an industrial-grade 3D printer (Prodways); Group 4 = bonding on a model from a conventional 3D printer (Asiga). To assess the positional trueness of crowns, the scans of crowns when on the model were superimposed over the reference scan. Median distance and angular deviations were analyzed using Kruskal-Wallis and Mann- Whitney tests (α = .05). Mesial and distal contacts of crowns were assessed by two independent clinicians. RESULTS: The control group (Group 2) resulted in the smallest distance deviations (0.30 ± 0.03 mm) compared to model-free (0.35 ± 0.02 mm; P = .002; Group 1) and conventional 3D printer (0.37 ± 0.01 mm; P = .001; Group 4) workflows. Buccolingual (P = .002) and mesiodistal (P = .01) angular deviations were higher in the conventional 3D printer group than in the control group (P = .002). Proximal contact assessments did not show any differences among groups. CONCLUSIONS: While bonding crowns to Ti-bases on a master model created with an industrial-grade 3D printer resulted in the highest positional trueness, model-free workflows had a similar positional trueness to those manufactured with a conventional 3D printer.


Asunto(s)
Coronas , Recubrimiento Dental Adhesivo , Diseño de Prótesis Dental , Titanio , Titanio/química , Humanos , Recubrimiento Dental Adhesivo/métodos , Implantes Dentales de Diente Único , Flujo de Trabajo , Técnicas In Vitro , Diseño Asistido por Computadora , Prótesis Dental de Soporte Implantado , Impresión Tridimensional , Modelos Dentales
17.
Int J Prosthodont ; 37(7): 285-307, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38819942

RESUMEN

PURPOSE: The purpose of this systematic review and meta-analysis was to compare the influence of fabrication method (conventional, subtractive, and additive procedures) and manufacturing trinomial (technology, printer, and material combination) on the marginal and internal fit of cobaltchromium (Co-Cr) tooth-supported frameworks. MATERIALS AND METHODS: An electronic systematic review was performed in five data bases: MEDLINE/PubMed, Embase, World of Science, Cochrane, and Scopus. Studies that reported the marginal and internal discrepancies of tooth-supported Co-Cr additive manufacturing (AM) frameworks were included. Two authors independently completed the quality assessment of the studies by applying the Joanna Briggs Institute Critical Appraisal Checklist for Quasi-Experimental Studies. A third examiner was consulted to resolve lack of consensus. RESULTS: A total of 31 articles were included and classified based on the evaluation method: manufacturing accuracy, the dual- or triple-scan method, stereomicroscope, optical coordinate measurement machine, microCT, profilometer, and silicone replica. Six subgroups were created: 3D Systems, Bego, Concept Laser, EOS, Kulzer, and Sisma. Due to the heterogeneity and limited data available, only the silicone replica group was considered for meta-analysis. The metaanalysis showed a mean marginal discrepancy of 91.09 µm (I2 = 95%, P < .001) in the conventional group, 77.48 µm (I2 = 99%, P < .001) in the milling group, and 82.92 µm (I2 = 98%, P < .001) in the printing group. Additionally, a mean internal discrepancy of 111.29 µm (I2 = 94%, P < .001) was obtained in the conventional casting group, 121.96 µm (I2 = 100%, P < .001) in the milling group, and 121.25 µm (I2 = 99%, P < .001) in the printing group. CONCLUSIONS: Manufacturing method and selective laser melting (SLM) metal manufacturing trinomial did not impact the marginal and internal discrepancies of Co-Cr frameworks for the fabrication of tooth-supported restorations.


Asunto(s)
Aleaciones de Cromo , Diseño Asistido por Computadora , Humanos , Aleaciones de Cromo/química , Adaptación Marginal Dental , Impresión Tridimensional , Diseño de Dentadura , Diseño de Prótesis Dental , Tecnología Odontológica , Materiales Dentales/química
18.
Int J Prosthodont ; 0(0): 1-21, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38727624

RESUMEN

Effect of model resin and shaft taper angle on the trueness and fit of additively manufactured removable dies in narrow ridge casts Purpose. To evaluate how model resin and shaft taper affect the trueness and fit of additively manufactured removable dies in narrow ridge casts. MATERIAL AND METHODS: A typodont model with a prepared mandibular molar was scanned to design virtual dies with different shaft tapers (0-degree (straight), 5-degree, and 10-degree tapered). Fifteen dies and one hollowed cast per taper were additively manufactured from two resins (G-PRINT 3D Model, GP and DentaMODEL, DM). Dies and casts were digitized to evaluate their trueness (root mean square (RMS)). The fit of the dies was evaluated with crown portion's RMS when seated in the cast and with distance deviations. Kruskal-Wallis and Mann-Whitney U tests were used to analyze data (α =.05). RESULTS: GP dies had lower overall, root, and base RMS, while DM dies had lower crown RMS (P≤.016). Straight dies had the highest overall, root, and base RMS within GP (P≤.030). Ten-degree dies had the lowest overall and base RMS, lower crown RMS than straight, and lower root RMS than 5-degree dies within DM (P≤.047). When the dies were seated, GP had lower crown portion RMS within 5- and 10-degree dies, and 5-degree dies had the highest RMS within DM (P≤.003). GP had lower distance deviations within 5- and 10-degree dies. Five-degree dies had the highest deviations within DM (P≤.049). CONCLUSIONS: GP dies mostly had higher trueness and better fit. Straight dies mostly had lower trueness within GP. Ten-degree taper mostly led to higher trueness within DM. The shaft taper affected DM dies' fit.

19.
J Prosthet Dent ; 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38760311

RESUMEN

STATEMENT OF PROBLEM: Cantilevered complete arch implant-supported prostheses are commonly fabricated from zirconia and more recently from strength gradient zirconia. Different polymer-based materials indicated for definitive fixed prostheses that could be used with additive or subtractive manufacturing have also been marketed recently. However, knowledge on the long-term fatigue behavior of cantilevered implant-supported prostheses made from these polymer-based materials and strength gradient zirconia is lacking. PURPOSE: The purpose of this in vitro study was to evaluate the fatigue behavior of implant-supported cantilevered prostheses of recently introduced computer-aided design and computer-aided manufacturing polymers and zirconia. MATERIAL AND METHODS: A master standard tessellation language file of a 9×11×20-mm specimen with a titanium base (Ti-base) space that represented an implant-supported cantilevered prosthesis was used to fabricate specimens from additively manufactured interim resin (AM), polymethyl methacrylate (SM-PM), nanographene-reinforced polymethyl methacrylate (SM-GR), high-impact polymer composite resin (SM-CR), and strength gradient zirconia (SM-ZR) (n=10). Each specimen was prepared by following the respective manufacturer's recommendations, and Ti-base abutments were cemented with an autopolymerizing luting composite resin. After cementation, the specimens were mounted in a mastication simulator and subjected to 1.2 million loading cycles under 100 N at 1.5 Hz; surviving specimens were subjected to another 1.2 million loading cycles under 200 N at 1.5 Hz. The load was applied to the cantilever extension, 12-mm from the clamp of the mastication simulator. The Kaplan-Meier survival analysis and Cox proportional hazards model were used to evaluate the data (α=.05). RESULTS: Significant differences in survival rate and hazard ratio were observed among materials (P<.001). Among tested materials, SM-ZR had the highest and AM had the lowest survival rate (P≤.031). All materials had a significantly higher hazard ratio than SM-ZR (P≤.011) in the increasing order of SM-GR, SM-PM, SM-CR, and AM. CONCLUSIONS: SM-ZR had the highest survival rate with no failed specimens. Even though most of the tested polymer-based materials failed during cyclic loading, these failures were commonly observed during the second 1.2 million loading cycles with 200 N. All materials had a higher hazard ratio than SM-ZR.

20.
J Prosthet Dent ; 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38641480

RESUMEN

STATEMENT OF PROBLEM: Multiple factors can influence the accuracy of intraoral scanners (IOSs). However, the impact of scan extension and starting quadrant on the accuracy of IOSs for fabricating tooth-supported crowns remains uncertain. PURPOSE: The purpose of the present in vitro study was to measure the influence of scan extension (half or complete arch scan) and the starting quadrant (same quadrant or contralateral quadrant of the location of the crown preparation) on the accuracy of four IOSs. MATERIAL AND METHODS: A typodont with a crown preparation on the left first molar was digitized (T710) to obtain a reference scan. Four scanner groups were created: TRIOS 5, PrimeScan, i700, and iTero. Then, 3 subgroups were defined based on the scan extension and starting quadrant: half arch (HA subgroup), complete arch scan starting on the left quadrant (CA-same subgroup), and complete arch scan starting on the right quadrant (CA-contralateral subgroup), (n=15). The reference scan was used as a control to measure the root mean square (RMS) error discrepancies with each experimental scan on the tooth preparation, margin of the tooth preparation, and adjacent tooth areas. Two-way ANOVA and pairwise multiple comparisons were used to analyze trueness (α=.05). The Levene and pairwise comparisons using the Wilcoxon Rank sum tests were used to analyze precision (α=.05). RESULTS: For the tooth preparation analysis, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.002). The iTero and TRIOS5 groups obtained better trueness than the PrimeScan and i700 groups (P<.001). Moreover, half arch scans obtained the best trueness, while the CA-contralateral scans obtained the worst trueness (P<.001). The iTero group showed the worst precision among the IOSs tested. For the margin of the tooth preparation evaluation, significant trueness and precision differences were found among the groups (P<.001) and subgroups (P<.001), with a significant interaction group×subgroup (P=.005). The iTero group obtained best trueness (P<.001), but the worst precision (P<.001) among the IOSs tested. Half arch scans obtained the best trueness and precision values. For the adjacent tooth analysis, trueness and precision differences were found among the groups (P<.001) and subgroups tested (P<.001), with a significant interaction group×subgroup (P=.005). The TRIOS 5 obtained the best trueness and precision. Half arch scans obtained the best accuracy. CONCLUSIONS: Scan extension and the starting quadrant impacted the scanning trueness and precision of the IOSs tested. Additionally, the IOSs showed varying scanning discrepancies depending on the scanning area assessed. Half arch scans presented the highest trueness and precision, and the complete arch scans in which the scan started in the contralateral quadrant of where the crown preparation was obtained the worst trueness and precision.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...