RESUMEN
OBJECTIVES: Familial transmission is observed in approximately 10% of cases with type 1 diabetes mellitus (T1DM). The most important gene determining susceptibility is the human leukocyte antigen complex (HLA) located on chromosome 6. More than 50 susceptible loci are associated with T1DM susceptibility have been identified in genes other than HLA. In this study, it was aimed to investigate the molecular genetic etiology by whole-exome sequence (WES) analysis in cases with familial T1DM with no or weakly detected HLA tissue type susceptibility. We aimed to identify new genes responsible for the development of type 1 diabetes and to reveal new genes that have not been shown in the literature before. METHODS: Cases with at least one T1DM diagnosis in first-degree relatives were included in the study. In the first step, HLA DQ2 and DQ8 loci, which are known to be associated with T1DM susceptibility, were investigated by. In the second step, the presence of variants that could explain the situation was investigated by WES analysis in patients who were negative for both HLA DQ2 and HLA DQ8 haplotypes, HLA DQ2 negative, HLA DQ8 positive, and HLA DQ2 positive and HLA DQ8 negative patients. RESULTS: The mean age and duration of diabetes of the 30 cases (Girl/Male: 17/13) were 14.9 ± 6 and 7.56 ± 3.84 years, respectively. There was consanguineous marriage in 5 (16%) of the families. As a result of filtering all exome sequence analysis data of two cases with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (-), seven cases with DQ2 (DQB1*02) (+) and DQ8 (DQB1*03:02) (-), and one case with DQ2 (DQB1*02) (-) and DQ8 (DQB1*03:02) (+), seven different variants in seven different genes were detected in five cases. The pathogenicity of the detected variants were determined according to the "American College of Medical Genetics and Genomics (ACMG)" criteria. These seven variants detected were evaluated as high-score VUS (Variants of unknown/uncertain significance). In the segregation study conducted for the mutation in the POLG gene detected in case 5, this variant was detected in the mother of the case and his brother with T1DM. Segregation studies are ongoing for variants detected in other affected individuals in the family. CONCLUSIONS: In conclusion, in this study, seven different variants in seven different genes were detected in five patients by WES analysis in familial T1DM patients with no or weak HLA tissue type susceptibility. These seven variants detected were evaluated as high-score VUS. POLG might be a novel candidate gene responsible for susceptibility to T1DM. Non-HLA genes directly responsible for the development of T1DM were not detected in any of the cases.
Asunto(s)
Enfermedad Celíaca , Diabetes Mellitus Tipo 1 , Femenino , Humanos , Masculino , Diabetes Mellitus Tipo 1/genética , Haplotipos , Exoma , Predisposición Genética a la Enfermedad , Biología Molecular , Análisis de SecuenciaRESUMEN
Acute lymphoblastic leukemia (ALL) is one of the most frequent causes of death from cancer. Since the discovery of chemotherapeutic agents, ALL has become a model for improvement of survival. In parallel to this, serious side effects were observed and new natural therapeutic options has been discussed. One of these substances is called propolis which is a resinous substance gathered by honeybees. In the molecular era, miRNAs have been shown to play crucial roles in the development of many clinical conditions. The aim of this study is to evaluate the effect of Aydin propolis on 81 human miRNA activity in CCRF-SB leukemia cell line. Apoptotic effects of propolis on cell lines were also evaluated and apoptosis were found to be induced 1.5 fold in B-cell leukemia cells. The expression of 63 miRNAs (46 miRNAs were downregulated, 19 miRNAs were upregulated) in propolis treated leukemia cells have changed significantly (p<0.05). In conclusion propolis has changed expression of miRNAs which have epigenetic effects on leukemic cells. It is thought that it can be a promising agent for ALL treatment for future studies.