Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(13): 3527-3530, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37390172

RESUMEN

To address the challenges associated with the realization of optical non-reciprocity and enhance the efficiency of GaAs solar cells, among other systems, in this study, we investigated defect-mode interactions in a one-dimensional photonic crystal containing two Weyl semimetal-based defect layers. Moreover, two non-reciprocal defect modes were observed, namely, when defects are identical and nearby. Increasing the defect distance weakened the defect-mode interactions, thus causing the modes to gradually move closer and then degenerate into one mode. It should be noted that by changing the optical thickness of one of the defect layers, the mode was found to degrade to two non-reciprocal dots with different frequencies and angles. This phenomenon can be attributed to an accidental degeneracy of two defect modes with dispersion curves that intersect in the forward and backward directions, respectively. Moreover, by twisting Weyl semimetal layers, the accidental degeneracy occurred only in the backward direction, thus resulting in a sharp angular and unidirectional filter.

2.
Opt Express ; 30(2): 2048-2062, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209353

RESUMEN

We theoretically study the optical properties of TM waves when their magnetic field direction is perpendicular to the armchair and zigzag optical axes of black phosphorus, respectively. It is found that hyperbolic dispersion and elliptic dispersion coexist in periodically arranged black phosphorus multilayers. Interestingly, by tilting the symmetric multilayers to be asymmetric, the elliptical part of the original two dispersions disappears as the wavelength increases. As such only the hyperbolic dispersion remains, showing an optical topological transition. In the region of the topological transition, a large transmitted group delay (3ps) and a reflected group delay (0.2ps) of the TM waves occurs simultaneously. The corresponding group velocities are slowed down to approximately c/1000 and c/100 (c is the speed of light in a vacuum), respectively. This dual-directional group delays significantly increase the wave-matter interaction so that nonreciprocal perfect absorptions can be realized in the mid-infrared band. Such asymmetrical black phosphorus hyperbolic metamaterials can be applied to the directional, tunable, and nonreciprocal perfect absorbers and also to devices based on strong wave-matter interactions.

3.
Opt Express ; 29(20): 31767-31777, 2021 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-34615263

RESUMEN

We extend a recent theoretical work [Phys. Rev. A101, 053856 (2020)10.1103/PhysRevA.101.053856] by replacing disorders characterized by varied atomic densities with defects characterized by vacant lattice cells to evaluate again three-color reflection in a one-dimensional optical lattice filled with cold 87Rb atoms. This is based on the consideration that trapped atoms may escape from some lattice cells and effects of vacant cells on light propagation are of major importance from both fundamental and applied research viewpoints. We consider two types of defective atomic lattices where vacant cells are randomly or continuously distributed among filled cells. Numerical results show that the wider reflection band in a large detuning region of negligible off-resonance absorption is quite sensitive to, while the narrower reflection bands in two near-resonant regions of electromagnetically induced transparency are rather robust against, the number of random vacant cells. In contrast, all three reflection bands exhibit strong robustness against the number of continuous vacant cells. Note, however, that both narrower reflection bands may become widened and exhibit a blue shift when continuous vacant cells appear in the front of our atomic lattice due to the joint contributions of Bragg scattering and quantum interference.

4.
Materials (Basel) ; 14(9)2021 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-34063151

RESUMEN

Photothermal therapy based on nanoparticles is a promising method for cancer treatment. However, there are still many limits in practical application. During photothermal therapy, improving therapeutic effect is contradictory to reducing overheating in healthy tissues. We should make the temperature distribution more uniform and reduce the damage of healthy tissue caused by overheating. In the present work, we develop a simple computational method to analyze the temperature distribution during photothermal therapy at three levels (nanoscale, micron scale, and millimeter scale), and investigate the effects of nanoparticle size, volume fraction, light intensity, and irradiation shape on temperature distribution. We find that it is difficult to achieve good therapeutic effect just by adjusting the volume fraction of nanoparticles and light intensity. To achieve good therapeutic effect, we propose a new irradiation shape, spot array light. This method can achieve a better temperature distribution by easily regulating the positions of spots for the tumor with a large aspect ratio or a small one. In addition, the method of irradiation with spot array light can better reduce the overheating at the bottom and top of the tumor than the full-coverage light or others such as ring light. This theoretical work presents a simple method to investigate the effects of irradiation shape on therapy and provides a far more controlled way to improve the efficacy of photothermal therapy.

5.
Opt Express ; 20(17): 19355-62, 2012 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23038578

RESUMEN

We study the solitons in parity-time symmetric potential in the medium with spatially modulated nonlocal nonlinearity. It is found that the coefficient of the spatially modulated nonlinearity and the degree of the uniform nonlocality can profoundly affect the stability of solitons. There exist stable solitons in low-power region, and unstable solitons in high-power region. In the unstable cases, the solitons exhibit jump from the original site to the next one, and they can continue the motion into the other lattices. The region of the stable soliton can be expanded by increasing the coefficient of the modulated nonlocality. Finally, critical amplitude of the imaginary part of the linear PT lattices is obtained, above which solitons are unstable and decay immediately.


Asunto(s)
Campos Electromagnéticos , Modelos Teóricos , Dinámicas no Lineales , Simulación por Computador
6.
Opt Express ; 17(26): 24096-101, 2009 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-20052121

RESUMEN

A two-dimensional nanoscale structure which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator is designed. The transmission characteristics of surface plasmon polaritons are studied in this structure. There are several types of modes in the transmission spectrum. These modes exhibit red shift when the radius of the ring increases. The transmission properties of such structure are simulated by the Finite-Difference Time-Domain (FDTD) method, and the eignwavelengths of the ring resonator are calculated theoretically. Results obtained by the theory of the ring resonator are consistent with those from the FDTD simulations.


Asunto(s)
Modelos Teóricos , Dispositivos Ópticos , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Transductores , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Luz , Dispersión de Radiación , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA