Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Int J Biol Macromol ; 273(Pt 1): 133074, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38866293

RESUMEN

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38801615

RESUMEN

Cancer invasion and migration play a pivotal role in tumor malignancy, which is a major cause of most cancer deaths. Rotating magnetic field (RMF), one of the typical dynamic magnetic fields, can exert substantial mechanical influence on cells. However, studying the effects of RMF on cell is challenging due to its complex parameters, such as variation of magnetic field intensity and direction. Here, we developed a systematic simulation method to explore the influence of RMF on tumor invasion and migration, including a finite element method (FEM) model and a cell-based hybrid numerical model. Coupling with the data of magnetic field from FEM, the cell-based hybrid numerical model was established to simulate the tumor cell invasion and migration. This model employed partial differential equations (PDEs) and finite difference method to depict cellular activities and solve these equations in a discrete system. PDEs were used to depict cell activities, and finite difference method was used to solve the equations in discrete system. As a result, this study provides valuable insights into the potential applications of RMF in tumor treatment, and a series of in vitro experiments were performed to verify the simulation results, demonstrating the model's reliability and its capacity to predict experimental outcomes and identify pertinent factors. Furthermore, these findings shed new light on the mechanical and chemical interplay between cells and the ECM, offering new insights and providing a novel foundation for both experimental and theoretical advancements in tumor treatment by using RMF.

3.
Research (Wash D C) ; 7: 0320, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38420580

RESUMEN

Triple-negative breast cancer (TNBC) is the most aggressive and lethal malignancy in women, with a lack of effective targeted drugs and treatment techniques. Gradient rotating magnetic field (RMF) is a new technology used in oncology physiotherapy, showing promising clinical applications due to its satisfactory biosafety and the abundant mechanical force stimuli it provides. However, its antitumor effects and underlying molecular mechanisms are not yet clear. We designed two sets of gradient RMF devices for cell culture and animal handling. Gradient RMF exposure had a notable impact on the F-actin arrangement of MDA-MB-231, BT-549, and MDA-MB-468 cells, inhibiting cell migration and invasion. A potential cytoskeleton F-actin-associated gene, CCDC150, was found to be enriched in clinical TNBC tumors and cells. CCDC150 negatively correlated with the overall survival rate of TNBC patients. CCDC150 promoted TNBC migration and invasion via activation of the transforming growth factor ß1 (TGF-ß1)/SMAD3 signaling pathway in vitro and in vivo. CCDC150 was also identified as a magnetic field response gene, and it was marked down-regulated after gradient RMF exposure. CCDC150 silencing and gradient RMF exposure both suppressed TNBC tumor growth and liver metastasis. Therefore, gradient RMF exposure may be an effective TNBC treatment, and CCDC150 may emerge as a potential target for TNBC therapy.

4.
Biomater Sci ; 12(5): 1332-1334, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38362932

RESUMEN

Correction for 'MiR-4458-loaded gelatin nanospheres target COL11A1 for DDR2/SRC signaling pathway inactivation to suppress the progression of estrogen receptor-positive breast cancer' by Jie Liu et al., Biomater. Sci., 2022, 10, 4596-4611, https://doi.org/10.1039/D2BM00543C.

5.
Prog Biophys Mol Biol ; 187: 36-50, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38280492

RESUMEN

Tissue repair and regeneration is a vital biological process in organisms, which is influenced by various internal mechanisms and microenvironments. Pulsed electromagnetic fields (PEMFs) are becoming a potential medical technology due to its advantages of effectiveness and non-invasiveness. Numerous studies have demonstrated that PEMFs can stimulate stem cell proliferation and differentiation, regulate inflammatory reactions, accelerate wound healing, which is of great significance for tissue regeneration and repair, providing a solid basis for enlarging its clinical application. However, some important issues such as optimal parameter system and potential deep mechanisms remain to be resolved due to PEMFs window effect and biological complexity. Thus, it is of great importance to comprehensively summarizing and analyzing the literature related to the biological effects of PEMFs in tissue regeneration and repair. This review expounded the biological effects of PEMFs on stem cells, inflammation response, wound healing and musculoskeletal disorders in order to improve the application value of PEMFs in medicine. It is believed that with the continuous exploration of biological effects of PEMFs, it will be applied increasingly widely to tissue repair and other diseases.


Asunto(s)
Campos Electromagnéticos , Células Madre Mesenquimatosas , Diferenciación Celular , Cicatrización de Heridas , Células Madre
6.
Int J Biol Macromol ; 256(Pt 1): 128370, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000594

RESUMEN

Infection poses a significant barrier to effective wound repair, leading to increased inflammatory responses that ultimately result in incomplete and prolonged wound healing. To address this challenge, numerous antibacterial ingredients have been incorporated into dressings to inhibit wound infection. Our previous work demonstrated that lysozyme/silver nanoparticles (LYZ/AgNPs) complexes, prepared using an eco-friendly one-step aqueous method, exhibited excellent antibacterial efficacy with favorable biosafety. To further explore its potential application in advancing wound healing, calcium alginate (CA) with good porosity, water absorption, and water retention capacities was formulated with LYZ/AgNPs to prepare composite sponge (CA/LYZ/AgNPs). As expected, in vivo experiments involving full-thickness skin wound and scald wound healing experiments demonstrated that CA-LYZ-AgNPs composite sponges with excellent biocompatibility exhibited remarkable antibacterial activity against gram-positive bacteria, gram-negative bacteria and fungi, and outperformed the wound healing process efficacy of other commercially available AgNPs-loaded wound dressings. In summary, this work introduces a CA/LYZ/AgNPs sponge featuring exceptional antibacterial efficacy and biocompatibility, thus holding promising potential in wound care applications.


Asunto(s)
Alginatos , Nanopartículas del Metal , Alginatos/farmacología , Plata/farmacología , Muramidasa , Antibacterianos/farmacología , Cicatrización de Heridas , Vendajes , Agua
7.
Biomacromolecules ; 24(12): 5859-5870, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-38015033

RESUMEN

Nano scale topography scaffold is more bioactive and biomimetic than smooth fiber topographies. Tendon stem cells (TSCs) play important roles in the tendinogenesis of tendon tissue engineering, but the effects and mechanisms of nano topography on TSC behavior are still unclear. This study determined whether the morphology, proliferation, cytoskeleton, and differentiation of TSCs are affected by topography of scaffold in vitro. The porous PA56 scaffolds were prepared with different concentration ratios of glycerol as the molecular template by electrospinning. Its topological characteristics, hydrophilicity, and degradation properties varied with glycerol proportion and movement rate of the receiving plate. Porous fibers promoted the proliferation of TSCs and the number of TSCs varied with topography. Although there was no significant difference due to the small sample size, the number of pseudopodia and cell polarizability still showed differences among different topographies. The morphology of actin cytoskeleton of TSCs showed difference among cultured on porous fibers, smooth fibers, and in culture media with no fiber, suggesting the orientation growth of cells on porous fiber. Moreover, porous fibers promoted teno-lineage differentiation of TSCs by upregulating tendon-specific gene expression. These findings provide evidence that nano porous topography scaffold promotes TSC proliferation, cytoskeleton orientation, and tenogenic differentiation.


Asunto(s)
Glicerol , Nanoporos , Tendones , Células Madre , Ingeniería de Tejidos , Diferenciación Celular , Proliferación Celular
8.
Prog Biophys Mol Biol ; 185: 1-16, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37793504

RESUMEN

The mechanical environment is important for tumorigenesis and progression. Tumor cells can sense mechanical signals by mechanosensitive receptors, and these mechanical signals can be converted to biochemical signals to regulate cell behaviors, such as cell differentiation, proliferation, migration, apoptosis, and drug resistance. Here, we summarized the effects of the mechanical microenvironment on breast cancer cell activity, and mechanotransduction mechanism from cellular microenvironment to cell membrane, and finally to the nucleus, and also relative mechanosensitive proteins, ion channels, and signaling pathways were elaborated, therefore the mechanical signal could be transduced to biochemical or molecular signal. Meanwhile, the mechanical models commonly used for biomechanics study in vitro and some quantitative descriptions were listed. It provided an essential theoretical basis for the occurrence and development of mechanosensitive breast cancer, and also some potential drug targets were proposed to treat such disease.


Asunto(s)
Neoplasias de la Mama , Mecanotransducción Celular , Humanos , Femenino , Mecanotransducción Celular/fisiología , Canales Iónicos/metabolismo , Transducción de Señal , Fenómenos Biomecánicos , Microambiente Tumoral
9.
ACS Appl Mater Interfaces ; 15(43): 49931-49942, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37856675

RESUMEN

The skin secretion of Andrias davidianus (SSAD) is a novel biological adhesive raw material under development. This material exhibits robust adhesion while maintaining the flexibility of the wound. It also has the potential for large-scale production, making it promising for practical application explore. Hence, in-depth research on methods to fine-tune SSAD properties is of great importance to promote its practical applications. Herein, we aim to enhance the adhesive and healing properties of SSAD by incorporating functional components. To achieve this goal, we selected 3,4-dihydroxy-l-phenylalanine and vaccarin as the functional components and mixed them with SSAD, resulting in a new bioadhesive, namely, a formulation termed "enhanced SSAD" (ESSAD). We found that the ESSAD exhibited superior adhesive properties, and its adhesive strength was improved compared with the SSAD. Moreover, ESSAD demonstrated a remarkable ability to promote wound healing. This study presents an SSAD-based bioadhesive formulation with enhanced properties, affirming the feasibility of developing SSAD-based adhesive materials with excellent performance and providing new evidence for the application of SSAD. This study also aims to show that SSAD can be mixed with other substances, and addition of effective components to SSAD can be studied to further adjust or improve its performance.


Asunto(s)
Adhesivos Tisulares , Cicatrización de Heridas , Humanos , Adhesivos/farmacología , Piel , Adhesivos Tisulares/farmacología , Adherencias Tisulares , Moco , Hidrogeles
10.
Life Sci ; 332: 122084, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37716504

RESUMEN

Breast cancer (BC) metastasis is an enormous challenge targeting BC therapy. The extracellular matrix (ECM), the principal component of the BC metastasis niche, is the pivotal driver of breast tumor development, whose biochemical and biophysical characteristics have attracted widespread attention. Here, we review the biological effects of ECM constituents and the influence of ECM stiffness on BC metastasis and drug resistance. We provide an overview of the relative signal transduction mechanisms, existing metastasis models, and targeted drug strategies centered around ECM stiffness. It will shed light on exploring more underlying targets and developing specific drugs aimed at ECM utilizing biomimetic platforms, which are promising for breast cancer treatment.

11.
Int J Biol Macromol ; 250: 126147, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544559

RESUMEN

Triple-negative breast cancer (TNBC) is a fatal disease. Drug resistance and the lack of effective drugs are the leading causes of death in patients with TNBC. Recently, long non-coding RNAs have been proven to be effective drug design targets owing to their high tissue specificity; however, an effective drug delivery system is necessary for their clinical application. In this study, we constructed a novel nanodrug delivery system based on the epidermal growth factor receptor (EGFR)-targeted aptamer CL4-modified exosomes (EXOs-CL4) for the targeted delivery of aspartyl-tRNA synthetase-antisense RNA 1 (DARS-AS1) small interfering RNA (siRNA) and doxorubicin (DOX) to TNBC cells in vitro and in vivo. This delivery system exerted potent anti-proliferation, anti-migration, and pro-apoptotic effects on TNBC cells. Silencing DARS-AS1 increased the sensitivity of TNBC cells to DOX by suppressing the transforming growth factor-ß (TGF-ß)/Smad3 signaling pathway-induced autophagy, thereby enhancing the synergetic antitumor effects. Collectively, our findings revealed that EXOs-CL4-mediated delivery of DARS-AS1 siRNA can be used as a new treatment strategy for DOX-resistant TNBC. Moreover, EXOs-CL4 can be used as effective drug delivery systems for targeted TNBC therapy.

12.
iScience ; 26(8): 107365, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37554458

RESUMEN

Osteocytes are the mechano-sensors of bones. Large gradient high-static magnetic fields (LG-HMFs) produce stable, high-precision, and non-attenuation mechanical forces. We discovered that magnetic forces opposite to gravity inhibited MLO-Y4 osteocyte proliferation and viability by inducing structural damage and apoptosis. In contrast, magnetic force loading in the same direction as that of gravity promoted the proliferation and inhibited apoptosis of MLO-Y4 osteocytes. Differentially expressed gene (DEG) analysis after magnetic force stimulation indicated that the ECM-integrin-CSK axis responded most significantly to mechanical signals. Wisp2 was the most significant DEG between the 12 T upward and downward groups, showing the highest correlation with the Wnt pathway according to the STRING protein interaction database. Explaining the cellular and molecular mechanisms by which mechanical stimuli influence bone remodeling is currently the focus of osteocyte-related research. Our findings provide insights into the effects of LG-HMFs on bone cells, which have further implications in clinical practice.

13.
Colloids Surf B Biointerfaces ; 228: 113393, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37327653

RESUMEN

The mechanical properties of a stem cell culture substrate significantly impact cell adhesion, survival, migration, proliferation, and differentiation in vitro. A major challenge in engineering artificial stem cell substrate is to properly identify the relevant physical features of native stem cell niches, which are likely different for each stem cell type. The behavior of tendon stem cells has potentially significant implications for tendon repair. Here, microfiber scaffolds with various modulus of elasticity are fabricated by near-field electrospinning, and their regulating effects on the in vitro behavior of tendon stem cells (TSCs) are discussed in this study. The number of pseudopodia shows a biphasic relationship with the modulus of scaffold. The proliferation, polarization ratio and alignment degree along the fibers of the TSCs increase with the increase of fiber modulus. TSCs cultured on the scaffold with moderate modulus (1429 MPa) show the upregulation of tendon-specific genes (Col-I, Tnmd, SCX and TNCF). These microfiber scaffolds provide great opportunities to modulate TSCs behavior at the micrometer scales. In conclusion, this study provides an instructive mechanical microenvironment for TSCs behaviors and may lead to the development of desirable engineered artificial stem cell substrate for tendon healing.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Andamios del Tejido/química , Tendones , Células Madre , Diferenciación Celular/genética , Expresión Génica , Proliferación Celular , Regulación de la Expresión Génica
14.
Sci Total Environ ; 894: 164998, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37353011

RESUMEN

Hypobaric hypoxia is often associated with the plateau environment and can lead to altitude sickness or death. The underlying cause is a lack of oxygen, which limits energy metabolism and leads to a compensatory stress response. Although glycolysis is commonly accepted as the primary energy source during clinical hypoxia, our preliminary experiments suggest that hypobaric hypoxia may depress glycolysis. To provide a more comprehensive understanding of energy metabolism under short-term hypobaric hypoxia, we exposed mice to a simulated altitude of 5000 m for 6 or 12 h. After the exposure, we collected blood and liver tissues to quantify the substrates, enzymes, and metabolites involved in glycolysis, lactic acid metabolism, the tricarboxylic acid cycle (TCA), and fatty acid ß-oxidation. We also performed transcriptome and enzymatic activity analyses of the liver. Our results show that 6 h of hypoxic exposure significantly increased blood glucose, decreased lactic acid and triglyceride concentrations, and altered liver enzyme activities of mice exposed to hypoxia. The key enzymes in the glycolytic, TCA, and fatty acid ß-oxidation pathways were primarily affected. Specifically, the activities of key glycolytic enzymes, such as glucokinase, decreased significantly, while the activities of enzymes in the TCA cycle, such as isocitrate dehydrogenase, increased significantly. Lactate dehydrogenase, pyruvate carboxylase, and alanine aminotransferase were upregulated. These changes were partially restored when the exposure time was extended to 12 h, except for further downregulation of phosphofructokinase and glucokinase. This study demonstrates that acute high altitude hypoxia upregulated the lactic acid/amino acid-pyruvate-TCA pathways and fatty acid oxidation, but downregulated glycolysis in the liver of mice. The results obtained in this study provide a theoretical framework for understanding the mechanisms underlying the pathogenesis of high-altitude sickness in humans. Additionally, these findings have potential implications for the development of prevention and treatment strategies for altitude sickness.


Asunto(s)
Mal de Altura , Ciclo del Ácido Cítrico , Ratones , Humanos , Animales , Mal de Altura/metabolismo , Ácido Láctico , Aminoácidos/metabolismo , Regulación hacia Arriba , Regulación hacia Abajo , Ácido Pirúvico , Glucoquinasa/metabolismo , Glucólisis/fisiología , Hipoxia , Altitud , Ácidos Grasos
15.
Research (Wash D C) ; 6: 0146, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37228640

RESUMEN

The biological effects of magnetic fields (MFs) have been a controversial issue. Fortunately, in recent years, there has been increasing evidence that MFs do affect biological systems. However, the physical mechanism remains unclear. Here, we show that MFs (16 T) reduce apoptosis in cell lines by inhibiting liquid-liquid phase separation (LLPS) of Tau-441, suggesting that the MF effect on LLPS may be one of the mechanisms for understanding the "mysterious" magnetobiological effects. The LLPS of Tau-441 occurred in the cytoplasm after induction with arsenite. The phase-separated droplets of Tau-441 recruited hexokinase (HK), resulting in a decrease in the amount of free HK in the cytoplasm. In cells, HK and Bax compete to bind to the voltage-dependent anion channel (VDAC I) on the mitochondrial membrane. A decrease in the number of free HK molecules increased the chance of Bax binding to VDAC I, leading to increased Bax-mediated apoptosis. In the presence of a static MF, LLPS was marked inhibited and HK recruitment was reduced, resulting in an increased probability of HK binding to VDAC I and a decreased probability of Bax binding to VDAC I, thus reducing Bax-mediated apoptosis. Our findings revealed a new physical mechanism for understanding magnetobiological effects from the perspective of LLPS. In addition, these results show the potential applications of physical environments, such as MFs in this study, in the treatment of LLPS-related diseases.

16.
Food Funct ; 14(10): 4621-4631, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37158592

RESUMEN

The abnormal accumulation of fused in sarcoma (FUS) is a pathological hallmark in a proportion of patients with frontotemporal dementia and amyotrophic lateral sclerosis. Therefore, the clearance of FUS aggregates is a possible therapeutic strategy for FUS-associated neurodegenerative diseases. This study reports that curcumin can strongly suppress FUS droplet formation and stress granule aggregation of FUS. Fluorescence spectra and isothermal titration calorimetry showed that curcumin can bind FUS through hydrophobic interactions, thereby reducing the ß-sheet content of FUS. Aggregated FUS sequesters pyruvate kinase, leading to reduced ATP levels. However, results from a metabolomics study revealed that curcumin changed the metabolism pattern and differentially expressed metabolites were enriched in glycolysis. Curcumin attenuated FUS aggregation-mediated sequestration of pyruvate kinase and restored cellular metabolism, consequently increasing ATP levels. These results indicate that curcumin is a potent inhibitor of FUS liquid-liquid phase separation and provide novel insights into the effect of curcumin in ameliorating abnormal metabolism.


Asunto(s)
Curcumina , Demencia Frontotemporal , Sarcoma , Humanos , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo , Curcumina/farmacología , Demencia Frontotemporal/metabolismo , Adenosina Trifosfato , Mutación , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo
17.
Prog Biophys Mol Biol ; 179: 38-50, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37019340

RESUMEN

Malignancies are the leading human health threat worldwide. Despite rapidly developing treatments, poor prognosis and outcome are still common. Magnetic fields have shown good anti-tumoral effects both in vitro and in vivo, and represent a potential non-invasive treatment; however, the specific underlying molecular mechanisms remain unclear. We here review recent studies on magnetic fields and their effect on tumors at three different levels: organismal, cellular, and molecular. At the organismal level, magnetic fields suppress tumor angiogenesis, microcirculation, and enhance the immune response. At the cellular level, magnetic fields affect tumor cell growth and biological functions by affecting cell morphology, cell membrane structure, cell cycle, and mitochondrial function. At the molecular level, magnetic fields suppress tumors by interfering with DNA synthesis, reactive oxygen species level, second messenger molecule delivery, and orientation of epidermal growth factor receptors. At present, scientific experimental evidence is still lacking; therefore, systematic studies on the biological mechanisms involved are urgently needed for the future application of magnetic fields to tumor treatment.


Asunto(s)
Campos Magnéticos , Neoplasias , Humanos , Especies Reactivas de Oxígeno/metabolismo , División Celular , Ciclo Celular , Neoplasias/terapia , Campos Electromagnéticos
18.
PeerJ ; 11: e14578, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36643639

RESUMEN

The main purpose of this study was to study the changes in growth, root system, and tissue anatomical structure of Pinus sylvestris var. mongolica under soil drought conditions. In this study, the growth indexes and photosynthesis of P. sylvestris var. mongolica seedlings under soil drought stress were studied by pot cultivation. Continuous pot water control experiment of the indoor culture of P. sylvestris var. mongolica was carried out, ensuring that the soil water content of each treatment reached 80%, 40%, and 20% of the field moisture capacity as control, moderate drought and severe drought, respectively. The submicroscopic structures of the needles and roots were observed using a scanning electron microscope and a transmission electron microscope. The response of soil roots to drought stress was studied by root scanning. Moderate drought stress increased needle stomatal density, while under severe drought stress, stomatal density decreased. At the same time, the total number of root tips, total root length, root surface area, and root volume of seedlings decreased with the deepening of the drought. Furthermore, moderate drought and severe drought stress significantly reduced the chlorophyll a and chlorophyll b content in P. sylvestris var. mongolica seedlings compared to the control group. The needle cells were deformed and damaged, and chloroplasts and mitochondria were damaged, gradually disintegrated, and the number of osmiophiles increased. There was also an increase in nuclear vacuolation.


Asunto(s)
Pinus sylvestris , Suelo , Clorofila A , Sequías , Plantones/fisiología , Agua
19.
Biomacromolecules ; 24(1): 1-18, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36507729

RESUMEN

Amyloid protein cross-seeding is a peculiar phenomenon of cross-spreading among different diseases. Unlike traditional infectious ones, diseases caused by amyloid protein cross-seeding are spread by misfolded proteins instead of pathogens. As a consequence of the interactions among misfolded heterologous proteins or polypeptides, amyloid protein cross-seeding is considered to be the crucial cause of overlapping pathological transmission between various protein misfolding disorders (PMDs) in multiple tissues and cells. Here, we briefly review the phenomenon of cross-seeding among amyloid proteins. As an interesting example worth mentioning, the potential links between the novel coronavirus pneumonia (COVID-19) and some neurodegenerative diseases might be related to the amyloid protein cross-seeding, thus may cause an undesirable trend in the incidence of PMDs around the world. We then summarize the theoretical models as well as the experimental techniques for studying amyloid protein cross-seeding. Finally, we conclude with an outlook on the challenges and opportunities for basic research in this field. Cross-seeding of amyloid opens up a new perspective in our understanding of the process of amyloidogenesis, which is crucial for the development of new treatments for diseases. It is therefore valuable but still challenging to explore the cross-seeding system of amyloid protein as well as to reveal the structural basis and the intricate processes.


Asunto(s)
COVID-19 , Enfermedades Neurodegenerativas , Humanos , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/química , Amiloide/metabolismo
20.
Adv Healthc Mater ; 12(6): e2202143, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36511367

RESUMEN

Osteoarthritis (OA) is a debilitating joint disease affecting nearly 400 million people with no efficient etiological therapies. OA is primarily identified by cartilage destruction, and gradual degeneration of the whole joint would happen when the OA progresses. Hence, cartilage has been identified as the primary therapeutic target of OA. Unfortunately, numerous barriers block the delivery of therapeutic agents into cartilage, including avascular traits and high hardness of the extracellular matrix. Herein, a cartilage-targeting peptide (CAP) modified polyvinylamine (PVAm)- poly (lactic-co-glycolic acid) (PLGA) copolymer (CAP-PVAm-PLGA) is designed, which can form spherical nanoparticles with the r-miR-140 (CPP-NPs). CPP-NPs possessed enhanced mechanical properties due to the introduction of PLGA to vehicles. Meanwhile, CAP endowed the cartilage targeting which facilitated CPP-NPs localization in cartilage. With such dual advantages, CPP-NPs exhibited outstanding penetrability and accumulation in cartilage even subchondral bone, and can penetrate to a depth of 1000 µm into human cartilage. The degeneration area of cartilage is reduced by 65% and synovial inflammation score by 80% in OA mice, and the microarchitecture of subchondral bone is also ameliorated. These studies established a promising platform for therapeutic RNA delivery in OA therapy that overcame the cartilage barriers.


Asunto(s)
Cartílago Articular , MicroARNs , Osteoartritis , Humanos , Ratones , Animales , Polímeros/uso terapéutico , Cartílago , Péptidos/uso terapéutico , Osteoartritis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...