Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Molecules ; 26(3)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573149

RESUMEN

The precise operation of molecular motion for constructing complicated mechanically interlocked molecules has received considerable attention and is still an energetic field of supramolecular chemistry. Herein, we reported the construction of two tris[2]pseudorotaxanes metallacycles with acid-base controllable molecular motion through self-sorting strategy and host-guest interaction. Firstly, two hexagonal Pt(II) metallacycles M1 and M2 decorated with different host-guest recognition sites have been constructed via coordination-driven self-assembly strategy. The binding of metallacycles M1 and M2 with dibenzo-24-crown-8 (DB24C8) to form tris[2]pseudorotaxanes complexes TPRM1 and TPRM2 have been investigated. Furthermore, by taking advantage of the strong binding affinity between the protonated metallacycle M2 and DB24C8, the addition of trifluoroacetic acid (TFA) as a stimulus successfully induces an acid-activated motion switching of DB24C8 between the discrete metallacycles M1 and M2. This research not only affords a highly efficient way to construct stimuli-responsive smart supramolecular systems but also offers prospects for precisely control multicomponent cooperative motion.


Asunto(s)
Compuestos Organoplatinos/química , Platino (Metal)/química , Rotaxanos/química , Complejos de Coordinación/síntesis química , Complejos de Coordinación/química , Éteres Corona/química , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Polímeros/síntesis química , Polímeros/química , Rotaxanos/síntesis química , Ácido Trifluoroacético/química
2.
Angew Chem Int Ed Engl ; 60(3): 1281-1289, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33009693

RESUMEN

In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.

3.
J Am Chem Soc ; 143(1): 399-408, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33371666

RESUMEN

During the past few decades, fabrication of multistep fluorescence-resonance energy transfer (FRET) systems has become one of the most attractive topics within supramolecular chemistry, chemical biology, and materials science. However, it is challenging to efficiently prepare multistep FRET systems with precise control of the distances between locations and the numbers of fluorophores. Herein we present the successful fabrication of a two-step FRET system bearing specific numbers of anthracene, coumarin, and BODIPY moieties at precise distances and locations through an efficient and controllable orthogonal self-assembly approach based on metal-ligand coordination and host-guest interactions. Notably, the photosensitization efficiency and photooxidation activity of the two-step FRET system gradually increased with the number of energy transfer steps. For example, the two-step FRET system exhibited 1.5-fold higher 1O2 generation efficiency and 1.2-fold higher photooxidation activity than that of its corresponding one-step FRET system. This research not only provides the first successful example of the efficient preparation of multistep FRET systems through orthogonal self-assembly involving coordination and host-guest interactions but also pushes multistep FRET systems toward the application of photosensitized oxidation of a sulfur mustard simulant.

4.
J Am Chem Soc ; 143(1): 442-452, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33371675

RESUMEN

The organization of molecular motors in supramolecular assemblies to allow the amplification and transmission of motion and collective action is an important step toward future responsive systems. Metal-coordination-driven directional self-assembly into supramolecular metallacycles provides a powerful strategy to position several motor units in larger structures with well-defined geometries. Herein, we present a pyridyl-modified molecular motor ligand (MPY) which upon coordination with geometrically distinct di-Pt(II) acceptors assembles into discrete metallacycles of different sizes and shapes. This coordination leads to a red-shift of the absorption bands of molecular motors, making these motorized metallacycles responsive to visible light. Photochemical and thermal isomerization experiments demonstrated that the light-driven rotation of the motors in the metallacycles is similar to that in free MPY in solution. CD studies show that the helicity inversions associated with each isomerization step in the rotary cycle are preserved. To explore collective motion, the trimeric motor-containing metallacycle was aggregated with heparin through multiple electrostatic interactions, to construct a multi-component hierarchical system. SEM, TEM, and DLS measurements revealed that the photo- and thermal-responsive molecular motor units enabled selective manipulation of the secondary supramolecular aggregation process without dissociating the primary metallacycle structures. These visible-light-responsive metallacycles, with intrinsic multiple rotary motors, offer prospects for cooperative operations, dynamic hierarchical self-assembled systems, and adaptive materials.

5.
J Am Chem Soc ; 142(39): 16748-16756, 2020 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-32869633

RESUMEN

During the past few decades, fabrication of functional rotaxane-branched dendrimers has become one of the most attractive yet challenging topics within supramolecular chemistry and materials science. Herein, we present the successful fabrication of a family of new rotaxane-branched dendrimers containing up to 21 platinum atoms and 42 photosensitizer moieties through an efficient and controllable divergent approach. Notably, the photosensitization efficiencies of these rotaxane-branched dendrimers gradually increased with the increase of dendrimer generation. For example, third-generation rotaxane-branched dendrimer PG3 revealed 13.3-fold higher 1O2 generation efficiency than its corresponding monomer AN. The enhanced 1O2 generation efficiency was attributed to the enhancement of intersystem crossing (ISC) through the simple and efficient incorporation of multiple heavy atoms and photosensitizer moieties on the axles and wheels of the rotaxane units, respectively, which has been validated by UV-visible and fluorescence techniques, time-dependent density functional theory calculations, photolysis model reactions, and apparent activation energy calculations. Therefore, we develop a new promising platform of rotaxane-branched dendrimers for the preparation of effective photosensitizers.

6.
J Am Chem Soc ; 142(34): 14638-14648, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32794746

RESUMEN

Fluorescent metallosupramolecules have received considerable attention due to their precisely controlled dimensions as well as the tunable photophysical and photochemical properties. However, phosphorescent analogues are still rare and limited to small structures with low-temperature phosphorescence. Herein, we report the self-assembly and photophysical studies of a giant, discrete metallosupramolecular concentric hexagon functionalized with six alkynylplatinum(II) bzimpy moieties. With a size larger than 10 nm and molecular weight higher than 26 000 Da, the assembled terpyridine-based supramolecule displayed phosphorescent emission at room temperature. Moreover, the supramolecule exhibited enhanced aggregation-induced phosphorescent emission compared to the ligand by tuning the aggregation states through intermolecular interactions and significant enhancement of emission to CO2 gas.

7.
Nat Commun ; 11(1): 3178, 2020 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576814

RESUMEN

Sophisticated mechanically interlocked molecules (MIMs) with interesting structures, properties and applications have attracted great interest in the field of supramolecular chemistry. We herein report a highly efficient self-assembly of heterometallic triangular necklace 1 containing Cu and Pt metals with strong antibacterial activity. Single-crystal X-ray analysis shows that the finely arranged triangular necklace 1 has two racemic enantiomers in its solid state with intriguing packing motif. The superior antibacterial activity of necklace 1 against both standard and clinically drug-resistant pathogens implies that the presence of Cu(I) center and platinum(II) significantly enhance the bacterium-binding/damaging activity, which is mainly attributed to the highly positively charged nature, the possible synergistic effect of heterometals in the necklace, and the improved stability in culture media. This work clearly discloses the structure-property relationships that the existence of two different metal centers not only facilitates successful construction of heterometallic triangular necklace but also endows it with superior nuclease properties and antibacterial activities.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , Bacterias/efectos de los fármacos , Cobre/química , Cristalografía por Rayos X , División del ADN/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Platino (Metal)/química , Estereoisomerismo
8.
J Am Chem Soc ; 142(18): 8473-8482, 2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32302108

RESUMEN

The precise construction of the high-order mechanically interlocked molecules (MIMs) with well-defined topological arrangements of multiple mechanically interlocked units has been a great challenge. Herein, we present the first successful preparation of a new family of daisy chain dendrimers, in which the individual [c2]daisy chain rotaxane units serve as the branches of dendrimer skeleton. In particular, the third-generation daisy chain dendrimer with 21 [c2]daisy chain rotaxane moieties was realized, which might be among the most complicated discrete high-order MIMs comprised of multiple [c2]daisy chain rotaxane units. Interestingly, such unique topological arrangements of multiple stimuli-responsive [c2]daisy chain rotaxanes endowed the resultant daisy chain dendrimers controllable and reversible nanoscale dimension modulation through the collective and amplified extension/contraction of each [c2]daisy chain rotaxane branch upon the addition of acetate anions or DMSO molecules as external stimulus. Furthermore, on the basis of such an intriguing size switching feature of daisy chain dendrimers, dynamic composite polymer films were constructed through the incorporation of daisy chain dendrimers into polymer films, which could undergo fast, reversible, and controllable shape transformations when DMSO molecules were employed as stimulus. The successful merging of [c2]daisy chain rotaxanes and dendrimers described herein provides not only a brand-new type of high-order mechanically interlocked systems with well-defined topological arrangements of [c2]daisy chain rotaxanes, but also a successful and practical approach toward the construction of supramolecular dynamic materials.

9.
J Am Chem Soc ; 142(13): 6285-6294, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32160466

RESUMEN

Design and construction of new functionalized supramolecular coordination complexes (SCCs) via coordination-driven self-assembly strategy is highly important in supramolecular chemistry and materials science. Herein, we present a family of well-defined metallacycles decorated with mesogenic forklike dendrons through the strategy of coordination-driven self-assembly. Due to the existence of mesogenic forklike dendrons, the obtained metallacycles displayed the smectic A liquid crystal phase at room temperature while their precursors exhibited the rectangular columnar liquid crystal phase. Interestingly, by taking advantage of the electrostatic interactions between the positively charged metallacycle and the negatively charged heparin, the doping of heparin induced a significant change of the liquid-crystalline behaviors of metallacycles. More importantly, the prepared liquid-crystalline metallacycles could be further applied for holographic storage of colored images. Notably, the rhomboidal metallacycle and hexagonal metallacycle gave rise to different holographic performances although they featured a similar liquid crystal phase behavior. Therefore, this research not only provides the first successful example of supramolecular liquid-crystalline metallacycles for holographic storage of colored images but also opens a new door for supramolecular liquid-crystalline metallacycles toward advanced optical applications.

10.
Materials (Basel) ; 13(1)2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31935829

RESUMEN

In order to study the effect of nitriding or shot peening on the surface modification and fatigue properties of martensitic stainless-steel Custom 465, the residual stress and micro-hardness of the strengthened layer are determined by X-ray and micro-hardness tester, respectively. The up-and-down method is used to measure the rotational bending fatigue strength at 1 × 107 cycles, and the fatigue fracture characteristic is observed by scanning electron microscopy. The relationship between surface residual stress and internal fatigue limit of surface strengthening treatment is discussed. Results show that nitriding or shot peening surface strengthening layer forms a certain depth of compressive residual stress, where in the surface compressive residual stress of the nitrided specimens is greater than the shot peened specimens. The micro-hardness of the nitrided or shot peened surface strengthening layer is significantly improved, where in the surface micro-hardness of nitriding specimens are higher than shot peening specimens. The nitriding or shot peening surface strengthening can significantly improve the fatigue limit of Custom 465, wherein the fatigue limits of nitrided and shot peened surface strengthened specimens are 50.09% and 50.66% higher than that of the un-surface strengthened specimens, respectively. That is, the effect of the two strengthening methods on fatigue limit is not very different. The fracture characteristics show that the fatigue crack of the un-surface strengthened specimens originates from the surface, while the fatigue crack of surface strengthened specimens originates from the subsurface layer under the strengthened layer. The relationship between the internal fatigue limit and the surface residual stress of the surface strengthened specimen can be used as a method for predicting the fatigue limit of the surface strengthened specimens.

11.
RSC Adv ; 11(2): 1187-1193, 2020 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-35423686

RESUMEN

A discrete rhomboidal metallacycle R functionalized with bis-[2]pseudorotaxane of [Cu(phenanthroline)2]+ derivatives was successfully synthesized via coordination-driven self-assembly. Furthermore, the host-guest complexation of such a bis-[2]pseudorotaxane metallacycle with a bis-pillar[5]arene (bisP5) allowed for the formation of a new family of cross-linked supramolecular polymers R⊃(bisP5)2, which displayed interesting redox-responsive properties. By taking advantage of the substantial structural differences between the coordination geometries of [Cu(phenanthroline)2]+ and [Cu(phenanthroline)2]2+, the weight-average diffusion coefficients D of the supramolecular polymer were adjusted through changing the redox state of the Cu(i)/Cu(ii) complexes.

12.
ACS Macro Lett ; 9(1): 61-69, 2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-35638656

RESUMEN

Bacterial biofilms are troublesome in the treatment of bacterial infectious diseases due to their inherent resistance to antibiotic therapy. Exploration of alternative antibiofilm reagents provides opportunities to achieve highly effective treatments. Herein, we propose a strategy to employ self-assembled saccharide-functionalized amphiphilic metallacycles ([2+2]-Gal, [3+3]-Gal, and [6+6]-Gal) with multiple positive charges as a different type of antibacterial reagent, marrying saccharide functionalization that interact with bacteria via "sweet talking". These self-assembled glyco-metallacycles gave various nanostructures (nanoparticles, vesicles or micron-sized vesicles) with different biofilms inhibition effect on Staphylococcus aureus (S. aureus). Especially, the peculiar self-assembly mechanism, superior antibacterial effect and biofilms inhibition distinguished the [6+6]-Gal from other metallacycles. Meanwhile, in vivo S. aureus pneumonia animal model experiments suggested that [6+6]-Gal could relieve mice pneumonia aroused by S. aureus effectively. In addition, the control study of metallacycle [3+3]-EG5 confirmed the significant role of galactoside both in the self-assembly process and the antibacterial efficacy. In view of the superior effect against bacteria, the saccharide-functionalized metallacycle could be a promising candidate as biofilms inhibitor or treatment agent for pneumonia.

13.
Nat Commun ; 10(1): 4285, 2019 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-31537803

RESUMEN

The preparation of fluorescent discrete supramolecular coordination complexes (SCCs) has attracted considerable attention within the fields of supramolecular chemistry, materials science, and biological sciences. However, many challenges remain. For instance, fluorescence quenching often occurs due to the heavy-atom effect arising from the Pt(II)-based building block in Pt-based SCCs. Moreover, relatively few methods exist for tuning of the emission wavelength of discrete SCCs. Thus, it is still challenging to construct discrete SCCs with high fluorescence quantum yields and tunable fluorescence wavelengths. Here we report nine organoplatinum fluorescent metallacycles that exhibit high fluorescence quantum yields and tunable fluorescence wavelengths through simple regulation of their photoinduced electron transfer (PET) and intramolecular charge transfer (ICT) properties. Moreover, 3D fluorescent films and fluorescent inks for inkjet printing were fabricated using these metallacycles. This work provides a strategy to solve the fluorescence quenching problem arising from the heavy-atom effect of Pt(II), and offers an alternative approach to tune the emission wavelengths of discrete SCCs in the same solvent.

14.
J Am Chem Soc ; 141(40): 16014-16023, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509391

RESUMEN

To explore a new supramolecular interaction as the main driving force to induce hierarchical self-assembly (HSA) is of great importance in supramolecular chemistry. Herein, we present a radical-induced HSA process through the construction of well-defined rhomboidal metallacycles containing triphenylamine (TPA) moieties. The light-induced radical generation of the TPA-based metallacycle has been demonstrated, which was found to subsequently drive hierarchical self-assembly of metallacycles in both solution and solid states. The morphologies of nanovesicle structures and nanospheres resulting from hierarchical self-assembly have been well-illustrated by using TEM and high-angle annular dark-field STEM (HAADF-STEM) micrographs. The mechanism of HSA is supposed to be associated with the TPA radical interaction and metallacycle stacking interaction, which has been supported by the coarse-grained molecular dynamics simulations. This study provides important information to understand the fundamental TPA radical interaction, which thus injects new energy into the hierarchical self-assembly of supramolecular coordination complexes (SCCs). More interestingly, the stability of TPA radical cations was significantly increased in these metallacycles during the hierarchical self-assembly process, thereby opening a new way to develop stable organic radical cations in the future.

15.
Chem Commun (Camb) ; 55(74): 11119-11122, 2019 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-31461096

RESUMEN

A new heterometallic macrocycle with photochromic properties was succesfully constructed through coordination-driven self-assembly, which features interesting photoswitchable Förster resonance energy transfer (FRET) behaviour.

16.
J Am Chem Soc ; 141(22): 8943-8950, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31088049

RESUMEN

Noninvasive control over the reversible generation of singlet oxygen (1O2) has found the practical significance in benefiting photodynamic therapy. In this study, we developed a new dual-stage metallacycle (M) by using a photosensitizer and photochromic switch as the functional building blocks, which enables the noninvasive "off-on" switching of 1O2 generation through the efficient intramolecular energy transfer. Due to the proximal placement of the functional entities within the well-defined metallacyclic scaffold, 1O2 generation in the ring-closed form state of the photochromic switch (C-M) is quenched by photoinduced energy transfer, whereas the generation of 1O2 in the ring-open form state (O-M) is activated upon light irradiation. More interestingly, the metallacycle-loaded nanoparticles with relatively high stability and water solubility were prepared, which allow for the delivery of metallacycles to cancer cells via endocytosis. Their theranostic potential has been systematically investigated both in vitro and in vivo. Under the light irradiation, the designed ring-open form nanoparticles (O-NPs) show remarkable higher cytotoxicity against cancer cells compared to the ring-closed form nanoparticles (C-NPs). In vivo experiments also revealed that tumors can be very efficiently eliminated by the designed nanoparticles under light irradiation with the ability to regulate in vivo generation of singlet oxygen. All these results demonstrated that the supramolecular coordination complexes with a dual-stage state provide a highly efficient nanoplatform for noninvasive control over the reversible generation of 1O2, thus allowing for their promising applications in tumor treatment and beyond.


Asunto(s)
Luz , Metales/química , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Células HeLa , Humanos , Modelos Moleculares , Conformación Molecular , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete/uso terapéutico
17.
Supramol Chem ; 31(8): 597-605, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-33833491

RESUMEN

Tetraphenylethylene (TPE) related (supra)molecules have been intensively investigated due to their aggregation-induced emission (AIE) effect based on the restriction of intramolecular rotation (RIR). Meanwhile, boron-dipyrromethene (BODIPY) tends to emit intense fluorescence with high quantum yields. Herein, we combined TPE, BODIPY and terpyridine (TPY) into one system to study the emissive behaviour of organic building block as well as a self-assembled metallo-supramolecule. The TPY and BODIPY substituents with bulky sizes provide strong hindrance to restrict the rotation of the phenyl groups on TPE, leading to enhancement of emissive properties in both solution and aggregation states. Furthermore, the BODIPY-TPE-TPY ligand (L) was assembled with Zn (II) through coordination-driven self-assembly to form a cyclic dimer (D) with typical AIE characteristics.

18.
J Am Chem Soc ; 141(1): 583-591, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30496688

RESUMEN

As a common phenomenon in biological systems, supramolecular transformations of biomacromolecules lead to specific biological functions as outputs, which thus inspire people to construct biomimetic dynamic systems through supramolecular transformation strategy. It should be noted that well-modulating the artificial macromolecules to fine-tune their properties is of great significance yet still remains a big challenge in polymer chemistry. In this study, through the combination of coordination-driven self-assembly and postassembly ring-opening polymerization, a six-armed star polymer linked by well-defined hexagonal metallacycle as core was successfully prepared. At the same time, the trans-platinum acetylide moieties as transformation sites were anchored onto the discrete metallacycle scaffold. Subsequently, the simple phosphine ligand-exchange reaction induced the conversions of platinum acetylide building blocks with the varied binding angles, which thus resulted in the successive hexagon-rhomboid-hexagon transformations of metallacyclic scaffold, therefore allowing for the corresponding supramolecular transformation of metallacycle-linked star polymers. More importantly, accompanied by such transformation process, property modulation of the resultant polymers has been successfully realized. In a word, by taking advantage of dynamic nature of metal-ligand coordination bonds and simple phosphine ligand-exchange reactions, facile architecture transformation of a star polymer to a linear polymer and back to a star polymer was successfully realized, which may provide a promising approach toward the construction of new dynamic polymeric materials.

19.
Inorg Chem ; 57(24): 15414-15420, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30521327

RESUMEN

A new discrete hexagonal metallacycle M containing tris-[2]pseudorotaxane moiety has been successfully designed and synthesized via coordination-driven self-assembly. The newly designed tris-[2]pseudorotaxane metallacycle was well characterized with nuclear magnetic resonance and mass spectra analysis. Such tris-[2]pseudorotaxane metallacycle M and pillar[5]arene dimer (PD) could further form a new family of cross-linked redox-responsive supramolecular polymer M⊃(PD)3 through a host-guest interaction. Interestingly, the polymer M⊃(PD)3 displayed redox-responsive behavior and showed tuned weight-average diffusion coefficients D upon redox stimuli, which is attributed to the changed coordination geometries of [Cu(phen)2]+ and [Cu(phen)2]2+ in such system.

20.
Macromol Rapid Commun ; 39(22): e1800454, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30142240

RESUMEN

Chirality-tunable supramolecular metallacycles containing two light-responsive dithienylethene units and two chiral 1,1'-bi-2-naphthol (BINOL) units have been successfully constructed via coordination-driven self-assembly. These new metallacycles are well-characterized with 1D multinuclear NMR (1 H and 31 P NMR), 2D 1 H-1 H COSY and DOSY, ESI-TOF-MS, and PM6 semiempirical molecular orbital methods. Interestingly, upon irradiation with ultraviolet and visible light, the conformation of these metallacycles can undergo reversible transformation between ring-open and ring-closed forms accompanied with the obvious change of CD signals. Further investigation reveals that the photoisomerization of the dithienylethene moieties induces the change in the dihedral angle of the binaphthyl rings, thus leading to the chiral modulation of supramolecular metallacycles. Thus, this study provides very few examples of the light-induced chirality-tunable metallosupramolecular assemblies, which may find potential application in mimicking the function of natural systems in the future.


Asunto(s)
Naftoles/química , Compuestos Organometálicos/química , Sustancias Macromoleculares/química , Estructura Molecular , Compuestos Organometálicos/síntesis química , Procesos Fotoquímicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...