Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Insect Mol Biol ; 32(2): 160-172, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36482511

RESUMEN

Long non-coding RNAs (lncRNAs), a class of transcripts exceeding 200 nucleotides and lacking protein coding potential, have been proven to play important roles in viral infection and host immunity. Bombyx mori nucleopolyhedrovirus (BmNPV) is an important pathogen, which causes the silkworm disease and leads to a huge challenge to the sericultural industry. At present, research on the roles of insect lncRNAs in host-virus interaction are relatively few. In this study, we explored the function of lincRNA_XR209691.3 that was significantly up-regulated in the silkworm fat body upon BmNPV infection. Firstly, the subcellular localization experiment confirmed that lincRNA_XR209691.3 was present in both the nucleus and cytoplasm. Enhancing the expression of lincRNA_XR209691.3 in BmN cells could promote the proliferation of BmNPV, while inhibition of lincRNA_XR209691.3 by RNA interference suppresses the proliferation of BmNPV. Combining RNA pull-down and mass spectrometry, we identified the host and BmNPV proteins that could interact with lincRNA_XR209691.3. Next, by using truncation experiment and RNA immunoprecipitation (RIP) assay, it was found that lincRNA_XR209691.3 could bind to the Actin domain of BmHSP70. Subsequently, overexpression of lncRNA_XR209691.3 in BmN cells promoted the expression of BmHSP70, while knockdown of BmHsp70 suppressed the replication of BmNPV. Based on the above results, it is speculated that lincRNA_XR209691.3 could promote the proliferation of BmNPV through interaction with BmHSP70, possibly by improving the stability of BmHSP70 and thereby enhancing the expression of BmHSP70. Our results shed light on the lncRNA function in insect-pathogen interactions and provide a new clue to elucidate the molecular mechanism of BmNPV infection.


Asunto(s)
Bombyx , Nucleopoliedrovirus , ARN Largo no Codificante , Animales , Proteínas de Insectos/metabolismo , Nucleopoliedrovirus/fisiología , Actinas/metabolismo , Bombyx/genética
2.
Arch Insect Biochem Physiol ; 110(1): e21880, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35191078

RESUMEN

Bombyx mori nuclear polyhedrosis virus (BmNPV) is one of several viruses that cause great harm to the sericulture industry, and its pathogenic mechanism is still being explored. Geldanamycin (GA), a kind of HSP90 inhibitor, has been verified to suppress BmNPV proliferation. However, the molecular mechanism by which GA inhibits BmNPV is unclear. MicroRNAs (miRNAs) have been shown to play a key role in regulating virus proliferation and host-pathogen interactions. In this study, BmN cells infected with BmNPV were treated by GA and DMSO for 72 h, respectively, then transcriptome analysis of miRNA was performed from the GA group and the control group. As a result, a total of 29 miRNAs were differentially expressed (DE), with 13 upregulated and 16 downregulated. Using bioinformatics analysis, it was found that the target genes of DEmiRNAs were involved in ubiquitin-mediated proteolysis, phagosome, proteasome, endocytosis pathways, and so on. Six DEmiRNAs were verified by quantitative reverse-transcription polymerase chain reaction. DElong noncoding RNA (DElncRNA)-DEmiRNA-messenger RNA (mRNA) regulatory networks involved in apoptosis and immune pathways were constructed in GA-treated BmN cells, which included 12 DEmiRNA, 132 DElncRNA, and 69 mRNAs. This regulatory network enriched the functional role of miRNA in the BmNPV-silkworm interactions and improved our understanding of the molecular mechanism of HSP90 inhibitors on BmNPV proliferation.


Asunto(s)
Bombyx , MicroARNs , Nucleopoliedrovirus , Animales , Benzoquinonas , Bombyx/metabolismo , Lactamas Macrocíclicas , MicroARNs/genética , MicroARNs/metabolismo , Nucleopoliedrovirus/fisiología , ARN Mensajero/metabolismo , Transcriptoma
3.
Insect Mol Biol ; 31(3): 308-316, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35060217

RESUMEN

Long non-coding RNA (lncRNA) is a type of non-coding RNA molecule, which exceeds 200 nucleotides in length and participates in the regulation of a variety of life activities. Recent studies showed that lncRNAs play important roles in viral infection and host immunity. At present, the researches on insect lncRNAs are relatively few. In this study, we found the expression of Lnc_209997 was significantly down-regulated in silkworm fat body infected with Bombyx mori nucleopolyhedrosis virus (BmNPV). Inhibition of Lnc_209997 promoted BmNPV replication. Enhancing the expression of Lnc_209997 inhibited the proliferation of BmNPV. miR-275-5p was up-regulated in silkworm fat body infected with BmNPV. Dual luciferase reporter gene system confirmed the interaction between Lnc_209997 and miR-275-5p. Over-expression of Lnc_209997 inhibited the expression of miR-275-5p, while inhibition of Lnc_209997 enhanced the expression of miR-275-5p. Further, over-expression of miR-275-5p can facilitate the replication of BmNPV. These results suggested that BmNPV could increase the expression of miR-275-5p by inhibiting cellular Lnc_209997 expression to promote their own proliferation. Our results are helpful for better understanding the role of lncRNAs in BmNPV infection, and provide insights into elucidating the molecular mechanism of interaction between Bombyx mori and virus.


Asunto(s)
Bombyx , MicroARNs , Nucleopoliedrovirus , ARN Largo no Codificante , Animales , Bombyx/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Nucleopoliedrovirus/fisiología , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...