Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
PeerJ ; 4: e2062, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27257545

RESUMEN

Mauremys reevesii (Geoemydidae) is one of the most common and widespread semi-aquatic turtles in East Asia. The unusually long lifespan of some individuals makes this turtle species a potentially useful model organism for studying the molecular basis of longevity. In this study, pooled total RNA extracted from liver, spleen and skeletal-muscle of three adult individuals were sequenced using Illumina Hiseq 2500 platform. A set of telomere-related genes were found in the transcriptome, including tert, tep1, and six shelterin complex proteins coding genes (trf1, trf2, tpp1, pot1, tin2 and rap1). These genes products protect chromosome ends from deterioration and therefore significantly contribute to turtle longevity. The transcriptome data generated in this study provides a comprehensive reference for future molecular studies in the turtle.

2.
PLoS One ; 10(12): e0144711, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26657158

RESUMEN

Mauremys sensu lato was divided into Mauremys, Chinemys, Ocadia, and Annamemys based on earlier research on morphology. Phylogenetic research on this group has been controversial because of disagreements regarding taxonomy, and the historical speciation is still poorly understood. In this study, 32 individuals of eight species that are widely distributed in Eurasia were collected. The complete mitochondrial (mt) sequences of 14 individuals of eight species were sequenced. Phylogenetic relationships, interspecific divergence times, and ancestral area reconstructions were explored using mt genome data (10,854 bp). Subsequent interspecific gene flow level assessment was performed using five unlinked polymorphic microsatellite loci. The Bayesian and maximum likelihood analyses revealed a paraphyletic relationship among four old genera (Mauremys, Annamemys, Chinemys, and Ocadia) and suggested the four old genera should be merged into the genus (Mauremys). Ancestral area reconstruction and divergence time estimation suggested Southeast Asia may be the area of origin for the common ancestral species of this genus and genetic drift may have played a decisive role in species divergence due to the isolated event of a glacial age. However, M. japonica may have been speciated due to the creation of the island of Japan. The detection of extensive gene flow suggested no vicariance occurred between Asia and Southeast Asia. Inconsistent results between gene flow assessment and phylogenetic analysis revealed the hybrid origin of M. mutica (Southeast Asian). Here ancestral area reconstruction and interspecific gene flow level assessment were first used to explore species origins and evolution of Mauremys sensu lato, which provided new insights on this genus.


Asunto(s)
Evolución Biológica , Flujo Génico , Especiación Genética , Tortugas/genética , Animales , ADN Mitocondrial , Evolución Molecular , Asia Oriental , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA