Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuron ; 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39019042

RESUMEN

Male animals often display higher levels of aggression than females. However, the neural circuitry mechanisms underlying this sexually dimorphic aggression remain elusive. Here, we identify a hypothalamic-amygdala circuit that mediates male-biased aggression in mice. Specifically, the ventrolateral part of the ventromedial hypothalamus (VMHvl), a sexually dimorphic region associated with eliciting male-biased aggression, projects densely to the posterior substantia innominata (pSI), an area that promotes similar levels of attack in both sexes of mice. Although the VMHvl innervates the pSI unidirectionally through both excitatory and inhibitory connections, it is the excitatory VMHvl-pSI projections that are strengthened in males to promote aggression, whereas the inhibitory connections that reduce aggressive behavior are strengthened in females. Consequently, the convergent hypothalamic input onto the pSI leads to heightened pSI activity in males, resulting in male-biased aggression. Our findings reveal a sexually distinct excitation-inhibition balance of a hypothalamic-amygdala circuit that underlies sexually dimorphic aggression.

2.
Nat Neurosci ; 26(12): 2131-2146, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37946049

RESUMEN

Social behaviors are innate and supported by dedicated neural circuits, but the molecular identities of these circuits and how they are established developmentally and shaped by experience remain unclear. Here we show that medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages have distinct response patterns and functions in social behavior in male mice. MeA cells expressing the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues and are essential for adult inter-male aggression. By contrast, MeA cells derived from the Dbx1 lineage (MeADbx1) respond broadly to social cues, respond strongly during ejaculation and are not essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results suggest a developmentally hardwired aggression circuit at the MeA level and a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavioral relevance during adulthood.


Asunto(s)
Complejo Nuclear Corticomedial , Neuronas , Masculino , Ratones , Animales , Neuronas/fisiología , Conducta Social , Amígdala del Cerebelo/fisiología , Factores de Transcripción/genética , Proteínas de Homeodominio/metabolismo
3.
Neuron ; 111(20): 3288-3306.e4, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37586365

RESUMEN

Sexual and aggressive behaviors are vital for species survival and individual reproductive success. Although many limbic regions have been found relevant to these behaviors, how social cues are represented across regions and how the network activity generates each behavior remains elusive. To answer these questions, we utilize multi-fiber photometry (MFP) to simultaneously record Ca2+ signals of estrogen receptor alpha (Esr1)-expressing cells from 13 limbic regions in male mice during mating and fighting. We find that conspecific sensory information and social action signals are widely distributed in the limbic system and can be decoded from the network activity. Cross-region correlation analysis reveals striking increases in the network functional connectivity during the social action initiation phase, whereas late copulation is accompanied by a "dissociated" network state. Based on the response patterns, we propose a mating-biased network (MBN) and an aggression-biased network (ABN) for mediating male sexual and aggressive behaviors, respectively.


Asunto(s)
Sistema Límbico , Conducta Social , Masculino , Animales , Ratones , Sistema Límbico/fisiología , Agresión/fisiología , Conducta Sexual Animal/fisiología
4.
Nature ; 618(7967): 1006-1016, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37286598

RESUMEN

In many species, including mice, female animals show markedly different pup-directed behaviours based on their reproductive state1,2. Naive wild female mice often kill pups, while lactating female mice are dedicated to pup caring3,4. The neural mechanisms that mediate infanticide and its switch to maternal behaviours during motherhood remain unclear. Here, on the basis of the hypothesis that maternal and infanticidal behaviours are supported by distinct and competing neural circuits5,6, we use the medial preoptic area (MPOA), a key site for maternal behaviours7-11, as a starting point and identify three MPOA-connected brain regions that drive differential negative pup-directed behaviours. Functional manipulation and in vivo recording reveal that oestrogen receptor α (ESR1)-expressing cells in the principal nucleus of the bed nucleus of stria terminalis (BNSTprESR1) are necessary, sufficient and naturally activated during infanticide in female mice. MPOAESR1 and BNSTprESR1 neurons form reciprocal inhibition to control the balance between positive and negative infant-directed behaviours. During motherhood, MPOAESR1 and BNSTprESR1 cells change their excitability in opposite directions, supporting a marked switch of female behaviours towards the young.


Asunto(s)
Infanticidio , Conducta Materna , Área Preóptica , Animales , Femenino , Ratones , Lactancia , Conducta Materna/fisiología , Vías Nerviosas/fisiología , Área Preóptica/citología , Área Preóptica/fisiología , Tálamo/citología , Tálamo/fisiología
5.
Horm Behav ; 151: 105339, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36878049

RESUMEN

Reproduction is the biological process by which new individuals are produced by their parents. It is the fundamental feature of all known life and is required for the existence of all species. All mammals reproduce sexually, a process that involves the union of two reproductive cells, one from a male and one from a female. Sexual behaviors are a series of actions leading to reproduction. They are composed of appetitive, action, and refractory phases, each supported by dedicated developmentally-wired neural circuits to ensure high reproduction success. In rodents, successful reproduction can only occur during female ovulation. Thus, female sexual behavior is tightly coupled with ovarian activity, namely the estrous cycle. This is achieved through the close interaction between the female sexual behavior circuit and the hypothalamic-pituitary-gonadal (HPG) axis. In this review, we will summarize our current understanding, learned mainly in rodents, regarding the neural circuits underlying each phase of the female sexual behaviors and their interaction with the HPG axis, highlighting the gaps in our knowledge that require future investigation.


Asunto(s)
Ovario , Reproducción , Animales , Femenino , Masculino , Ovulación , Ciclo Estral , Mamíferos
6.
bioRxiv ; 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36993508

RESUMEN

Social behaviors are innate and supported by dedicated neural circuits, but it remains unclear whether these circuits are developmentally hardwired or established through social experience. Here, we revealed distinct response patterns and functions in social behavior of medial amygdala (MeA) cells originating from two embryonically parcellated developmental lineages. MeA cells in male mice that express the transcription factor Foxp2 (MeAFoxp2) are specialized for processing male conspecific cues even before puberty and are essential for adult inter-male aggression. In contrast, MeA cells derived from the Dbx1-lineage (MeADbx1) respond broadly to social cues and are non-essential for male aggression. Furthermore, MeAFoxp2 and MeADbx1 cells show differential anatomical and functional connectivity. Altogether, our results support a developmentally hardwired aggression circuit at the level of the MeA and we propose a lineage-based circuit organization by which a cell's embryonic transcription factor profile determines its social information representation and behavior relevance during adulthood.

7.
Neuron ; 110(18): 3000-3017.e8, 2022 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-35896109

RESUMEN

Sexual behavior is fundamental for the survival of mammalian species and thus supported by dedicated neural substrates. The ventrolateral part of ventromedial hypothalamus (VMHvl) is an essential locus for controlling female sexual behaviors, but recent studies revealed the molecular complexity and functional heterogeneity of VMHvl cells. Here, we identify the cholecystokinin A receptor (Cckar)-expressing cells in the lateral VMHvl (VMHvllCckar) as the key controllers of female sexual behaviors. The inactivation of VMHvllCckar cells in female mice diminishes their interest in males and sexual receptivity, whereas activating these cells has the opposite effects. Female sexual behaviors vary drastically over the reproductive cycle. In vivo recordings reveal reproductive-state-dependent changes in VMHvllCckar cell spontaneous activity and responsivity, with the highest activity occurring during estrus. These in vivo response changes coincide with robust alternation in VMHvllCckar cell excitability and synaptic inputs. Altogether, VMHvllCckar cells represent a key neural population dynamically controlling female sexual behaviors over the reproductive cycle.


Asunto(s)
Agresión , Hipotálamo , Agresión/fisiología , Animales , Femenino , Hipotálamo/fisiología , Masculino , Mamíferos , Ratones , Receptor de Colecistoquinina A , Conducta Sexual Animal/fisiología
8.
Nat Neurosci ; 25(5): 659-674, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524141

RESUMEN

The mouse visual system serves as an accessible model to understand mammalian circuit wiring. Despite rich knowledge in retinal circuits, the long-range connectivity map from distinct retinal ganglion cell (RGC) types to diverse brain neuron types remains unknown. In this study, we developed an integrated approach, called Trans-Seq, to map RGCs to superior collicular (SC) circuits. Trans-Seq combines a fluorescent anterograde trans-synaptic tracer, consisting of codon-optimized wheat germ agglutinin fused to mCherry, with single-cell RNA sequencing. We used Trans-Seq to classify SC neuron types innervated by genetically defined RGC types and predicted a neuronal pair from αRGCs to Nephronectin-positive wide-field neurons (NPWFs). We validated this connection using genetic labeling, electrophysiology and retrograde tracing. We then used transcriptomic data from Trans-Seq to identify Nephronectin as a determinant for selective synaptic choice from αRGC to NPWFs via binding to Integrin α8ß1. The Trans-Seq approach can be broadly applied for post-synaptic circuit discovery from genetically defined pre-synaptic neurons.


Asunto(s)
Células Ganglionares de la Retina , Colículos Superiores , Animales , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Mamíferos/metabolismo , Ratones , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Sinapsis/fisiología
9.
Nat Neurosci ; 23(7): 854-868, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32424286

RESUMEN

General anesthesia (GA) can produce analgesia (loss of pain) independent of inducing loss of consciousness, but the underlying mechanisms remain unclear. We hypothesized that GA suppresses pain in part by activating supraspinal analgesic circuits. We discovered a distinct population of GABAergic neurons activated by GA in the mouse central amygdala (CeAGA neurons). In vivo calcium imaging revealed that different GA drugs activate a shared ensemble of CeAGA neurons. CeAGA neurons also possess basal activity that mostly reflects animals' internal state rather than external stimuli. Optogenetic activation of CeAGA potently suppressed both pain-elicited reflexive and self-recuperating behaviors across sensory modalities and abolished neuropathic pain-induced mechanical (hyper-)sensitivity. Conversely, inhibition of CeAGA activity exacerbated pain, produced strong aversion and canceled the analgesic effect of low-dose ketamine. CeAGA neurons have widespread inhibitory projections to many affective pain-processing centers. Our study points to CeAGA as a potential powerful therapeutic target for alleviating chronic pain.


Asunto(s)
Anestésicos Generales/farmacología , Núcleo Amigdalino Central/efectos de los fármacos , Neuronas GABAérgicas/efectos de los fármacos , Dolor/fisiopatología , Animales , Femenino , Masculino , Ratones , Vías Nerviosas/efectos de los fármacos , Percepción del Dolor/efectos de los fármacos , Percepción del Dolor/fisiología
10.
Neuron ; 102(5): 1053-1065.e4, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31006556

RESUMEN

How general anesthesia (GA) induces loss of consciousness remains unclear, and whether diverse anesthetic drugs and sleep share a common neural pathway is unknown. Previous studies have revealed that many GA drugs inhibit neural activity through targeting GABA receptors. Here, using Fos staining, ex vivo brain slice recording, and in vivo multi-channel electrophysiology, we discovered a core ensemble of hypothalamic neurons in and near the supraoptic nucleus, consisting primarily of neuroendocrine cells, which are persistently and commonly activated by multiple classes of GA drugs. Remarkably, chemogenetic or brief optogenetic activations of these anesthesia-activated neurons (AANs) strongly promote slow-wave sleep and potentiates GA, whereas conditional ablation or inhibition of AANs led to diminished slow-wave oscillation, significant loss of sleep, and shortened durations of GA. These findings identify a common neural substrate underlying diverse GA drugs and natural sleep and reveal a crucial role of the neuroendocrine system in regulating global brain states. VIDEO ABSTRACT.


Asunto(s)
Anestésicos Generales/farmacología , Hipnóticos y Sedantes/farmacología , Células Neuroendocrinas/efectos de los fármacos , Sueño de Onda Lenta/efectos de los fármacos , Núcleo Supraóptico/efectos de los fármacos , Anestesia General , Animales , Dexmedetomidina/farmacología , Electroencefalografía , Electromiografía , Fenómenos Electrofisiológicos , Hipotálamo/citología , Hipotálamo/efectos de los fármacos , Hipotálamo/metabolismo , Isoflurano/farmacología , Ketamina/farmacología , Ratones , Células Neuroendocrinas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Optogenética , Técnicas de Placa-Clamp , Propofol/farmacología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sueño/efectos de los fármacos , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Núcleo Supraóptico/citología , Núcleo Supraóptico/metabolismo
11.
Nat Commun ; 9(1): 4890, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459347

RESUMEN

Autapses are synaptic contacts of a neuron's axon onto its own dendrite and soma. In the neocortex, self-inhibiting autapses in GABAergic interneurons are abundant in number and play critical roles in regulating spike precision and network activity. Here we examine whether the principal glutamatergic pyramidal cells (PCs) also form functional autapses. In patch-clamp recording from both rodent and human PCs, we isolated autaptic responses and found that these occur predominantly in layer-5 PCs projecting to subcortical regions, with very few in those projecting to contralateral prefrontal cortex and layer 2/3 PCs. Moreover, PC autapses persist during development into adulthood. Surprisingly, they produce giant postsynaptic responses (∼5 fold greater than recurrent PC-PC synapses) that are exclusively mediated by AMPA receptors. Upon activation, autapses enhance burst firing, neuronal responsiveness and coincidence detection of synaptic inputs. These findings indicate that PC autapses are functional and represent an important circuit element in the neocortex.


Asunto(s)
Neocórtex/fisiología , Células Piramidales/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Potenciales de Acción/fisiología , Adulto , Animales , Axones/fisiología , Dendritas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Humanos , Masculino , Ratones Endogámicos C57BL , Neocórtex/citología , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Corteza Prefrontal/fisiología
12.
Sci Rep ; 8(1): 753, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29335582

RESUMEN

Dysregulation of voltage-gated sodium channels (VGSCs) is associated with multiple clinical disorders, including febrile seizures (FS). The contribution of different sodium channel subtypes to environmentally triggered seizures is not well understood. Here we demonstrate that somatic and axonal sodium channels primarily mediated through NaV1.2 and NaV1.6 subtypes, respectively, behave differentially at FT, and might play distinct roles in FS generation. In contrast to sodium channels on the main axonal trunk, somatic ones are more resistant to inactivation and display significantly augmented currents, faster gating rates and kinetics of recovery from inactivation at FT, features that promote neuronal excitabilities. Pharmacological inhibition of NaV1.2 by Phrixotoxin-3 (PTx3) suppressed FT-induced neuronal hyperexcitability in brain slice, while up-regulation of NaV1.2 as in NaV1.6 knockout mice showed an opposite effect. Consistently, NaV1.6 knockout mice were more susceptible to FS, exhibiting much lower temperature threshold and shorter onset latency than wildtype mice. Neuron modeling further suggests that NaV1.2 is the major subtype mediating FT-induced neuronal hyperexcitability, and predicts potential outcomes of alterations in sodium channel subtype composition. Together, these data reveal a role of native NaV1.2 on neuronal excitability at FT and its important contribution to FS pathogenesis.


Asunto(s)
Potenciales de Acción , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Canal de Sodio Activado por Voltaje NAV1.6/metabolismo , Neuronas/fisiología , Convulsiones Febriles/fisiopatología , Animales , Modelos Animales de Enfermedad , Ratones Noqueados , Canal de Sodio Activado por Voltaje NAV1.6/deficiencia , Neuronas/efectos de la radiación , Temperatura
13.
Cell Res ; 28(1): 90-110, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29056747

RESUMEN

Mutations in the proline-rich transmembrane protein 2 (PRRT2) are associated with paroxysmal kinesigenic dyskinesia (PKD) and several other paroxysmal neurological diseases, but the PRRT2 function and pathogenic mechanisms remain largely obscure. Here we show that PRRT2 is a presynaptic protein that interacts with components of the SNARE complex and downregulates its formation. Loss-of-function mutant mice showed PKD-like phenotypes triggered by generalized seizures, hyperthermia, or optogenetic stimulation of the cerebellum. Mutant mice with specific PRRT2 deletion in cerebellar granule cells (GCs) recapitulate the behavioral phenotypes seen in Prrt2-null mice. Furthermore, recording made in cerebellar slices showed that optogenetic stimulation of GCs results in transient elevation followed by suppression of Purkinje cell firing. The anticonvulsant drug carbamazepine used in PKD treatment also relieved PKD-like behaviors in mutant mice. Together, our findings identify PRRT2 as a novel regulator of the SNARE complex and provide a circuit mechanism underlying the PRRT2-related behaviors.


Asunto(s)
Cerebelo/fisiopatología , Distonía/genética , Proteínas de la Membrana/fisiología , Proteínas SNARE/metabolismo , Transmisión Sináptica/genética , Animales , Carbamazepina/farmacología , Carbamazepina/uso terapéutico , Cerebelo/metabolismo , Distonía/tratamiento farmacológico , Proteínas de la Membrana/genética , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Mutación , Células de Purkinje/metabolismo
14.
Cereb Cortex ; 27(1): 509-521, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-26494800

RESUMEN

Serotonergic innervation of the prefrontal cortex (PFC) modulates neuronal activity and PFC functions. However, the cellular mechanism for serotonergic modulation of neuronal excitability remains unclear. We performed patch-clamp recording at the axon of layer-5 pyramidal neurons in rodent PFC slices. We found surprisingly that the activation of 5-HT1A receptors selectively inhibits Na+ currents obtained at the axon initial segment (AIS) but not those at the axon trunk. In addition, Na+ channel subtype NaV1.2 but not NaV1.6 at the AIS is selectively modulated by 5-HT1A receptors. Further experiments revealed that the inhibitory effect is attributable to a depolarizing shift of the activation curve and a facilitation of slow inactivation of AIS Na+ currents. Consistently, dual somatic and axonal recording and simulation results demonstrate that the activation of 5-HT1A receptors could decrease the success rate of action potential (AP) backpropagation toward the somatodendritic compartments, enhancing the segregation of axonal and dendritic activities. Together, our results reveal a selective modulation of NaV1.2 distributed at the proximal AIS region and AP backpropagation by 5-HT1A receptors, suggesting a potential mechanism for serotonergic regulation of functional polarization in the dendro-axonal axis, synaptic plasticity and PFC functions.


Asunto(s)
Segmento Inicial del Axón/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Receptor de Serotonina 5-HT1A/metabolismo , Canales de Sodio/metabolismo , Animales , Ratones , Ratones Mutantes , Ratas , Ratas Sprague-Dawley
15.
Front Cell Neurosci ; 10: 239, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27803650

RESUMEN

Cortical fast-spiking (FS) neurons generate high-frequency action potentials (APs) without apparent frequency accommodation, thus providing fast and precise inhibition. However, the maximal firing frequency that they can reach, particularly in primate neocortex, remains unclear. Here, by recording in human, monkey, and mouse neocortical slices, we revealed that FS neurons in human association cortices (mostly temporal) could generate APs at a maximal mean frequency (Fmean) of 338 Hz and a maximal instantaneous frequency (Finst) of 453 Hz, and they increase with age. The maximal firing frequency of FS neurons in the association cortices (frontal and temporal) of monkey was even higher (Fmean 450 Hz, Finst 611 Hz), whereas in the association cortex (entorhinal) of mouse it was much lower (Fmean 215 Hz, Finst 342 Hz). Moreover, FS neurons in mouse primary visual cortex (V1) could fire at higher frequencies (Fmean 415 Hz, Finst 582 Hz) than those in association cortex. We further validated our in vitro data by examining spikes of putative FS neurons in behaving monkey and mouse. Together, our results demonstrate that the maximal firing frequency of FS neurons varies between species and cortical areas.

16.
Cell Rep ; 10(9): 1450-1458, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25753411

RESUMEN

A critical step in understanding the neural basis of human cognitive functions is to identify neuronal types in the neocortex. In this study, we performed whole-cell recording from human cortical slices and found a distinct subpopulation of neurons with intrinsic persistent activity that could be triggered by single action potentials (APs) but terminated by bursts of APs. This persistent activity was associated with a depolarizing plateau potential induced by the activation of a persistent Na+ current. Single-cell RT-PCR revealed that these neurons were inhibitory interneurons. This type of neuron was found in different cortical regions, including temporal, frontal, occipital, and parietal cortices in human and also in frontal and temporal lobes of nonhuman primate but not in rat cortical tissues, suggesting that it could be unique to primates. The characteristic persistent activity in these inhibitory interneurons may contribute to the regulation of pyramidal cell activity and participate in cortical processing.

17.
Front Comput Neurosci ; 9: 153, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26834617

RESUMEN

Neurons communicate with each other via synapses. Action potentials cause release of neurotransmitters at the axon terminal. Typically, this neurotransmitter release is tightly time-locked to the arrival of an action potential and is thus called synchronous release. However, neurotransmitter release is stochastic and the rate of release of small quanta of neurotransmitters can be considerably elevated even long after the ceasing of spiking activity, leading to asynchronous release of neurotransmitters. Such asynchronous release varies for tissue and neuron types and has been shown recently to be pronounced in fast-spiking neurons. Notably, it was found that asynchronous release is enhanced in human epileptic tissue implicating a possibly important role in generating abnormal neural activity. Current neural network models for simulating and studying neural activity virtually only consider synchronous release and ignore asynchronous transmitter release. Here, we develop a phenomenological model for asynchronous neurotransmitter release, which, on one hand, captures the fundamental features of the asynchronous release process, and, on the other hand, is simple enough to be incorporated in large-size network simulations. Our proposed model is based on the well-known equations for short-term dynamical synaptic interactions and includes an additional stochastic term for modeling asynchronous release. We use experimental data obtained from inhibitory fast-spiking synapses of human epileptic tissue to fit the model parameters, and demonstrate that our model reproduces the characteristics of realistic asynchronous transmitter release.

18.
Cereb Cortex ; 25(1): 258-70, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23968835

RESUMEN

Delayed asynchronous release (AR) evoked by bursts of presynaptic action potentials (APs) occurs in certain types of hippocampal and neocortical inhibitory interneurons. Previous studies showed that AR provides long-lasting inhibition and desynchronizes the activity in postsynaptic cells. However, whether AR undergoes developmental change remains unknown. In this study, we performed whole-cell recording from fast-spiking (FS) interneurons and pyramidal cells (PCs) in prefrontal cortical slices obtained from juvenile and adult rats. In response to AP trains in FS neurons, AR occurred at their output synapses during both age periods, including FS autapses and FS-PC synapses; however, the AR strength was significantly weaker in adults than that in juveniles. Further experiments suggested that the reduction of AR in adult animals could be attributable to the rapid clearance of residual Ca(2+) from presynaptic terminals. Together, our results revealed that the AR strength was stronger at juvenile but weaker in adult, possibly resulting from changes in presynaptic Ca(2+) dynamics. AR changes may meet the needs of the neural network to generate different types of oscillations for cortical processing at distinct behavioral states.


Asunto(s)
Potenciales de Acción/fisiología , Interneuronas/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/fisiología , Células Piramidales/fisiología , Ácido gamma-Aminobutírico/metabolismo , Factores de Edad , Animales , Señalización del Calcio , Potenciales Postsinápticos Inhibidores , Red Nerviosa/fisiología , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...