Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Trends Immunol ; 45(4): 259-273, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38503657

RESUMEN

The electron transport chain (ETC) couples electron transfer with proton pumping to generate ATP and it also regulates particular innate and adaptive immune cell function. While NLRP3 inflammasome activation was initially linked to reactive oxygen species (ROS) produced from Complexes I and III, recent research suggests that an intact ETC fueling ATP is needed. Complex II may be responsible for Th1 cell proliferation and in some cases, effector cytokine production. Complex III is required for regulatory T (Treg) cell function, while oxidative phosphorylation (OXPHOS) and Complexes I, IV, and V sustain proliferation and antibody production in B lymphocytes, with OXPHOS also being required for B regulatory (Breg) cell function. Despite challenges, the ETC shows therapeutic targeting potential for immune-related diseases and in immuno-oncology.


Asunto(s)
Mitocondrias , Fosforilación Oxidativa , Humanos , Mitocondrias/metabolismo , Transporte de Electrón , Especies Reactivas de Oxígeno/metabolismo , Adenosina Trifosfato/metabolismo
2.
J Immunol ; 212(1): 13-23, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37991425

RESUMEN

4-Octyl itaconate (4-OI) is a derivative of the Krebs cycle-derived metabolite itaconate and displays an array of antimicrobial and anti-inflammatory properties through modifying cysteine residues within protein targets. We have found that 4-OI significantly reduces the production of eosinophil-targeted chemokines in a variety of cell types, including M1 and M2 macrophages, Th2 cells, and A549 respiratory epithelial cells. Notably, the suppression of these chemokines in M1 macrophages was found to be NRF2-dependent. In addition, 4-OI can interfere with IL-5 signaling and directly affect eosinophil differentiation. In a model of eosinophilic airway inflammation in BALB/c mice, 4-OI alleviated airway resistance and reduced eosinophil recruitment to the lungs. Our findings suggest that itaconate derivatives could be promising therapeutic agents for the treatment of eosinophilic asthma.


Asunto(s)
Eosinófilos , Eosinofilia Pulmonar , Ratones , Animales , Eosinofilia Pulmonar/tratamiento farmacológico , Quimiocinas , Inflamación/tratamiento farmacológico
3.
Nature ; 615(7952): 490-498, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36890227

RESUMEN

Metabolic rewiring underlies the effector functions of macrophages1-3, but the mechanisms involved remain incompletely defined. Here, using unbiased metabolomics and stable isotope-assisted tracing, we show that an inflammatory aspartate-argininosuccinate shunt is induced following lipopolysaccharide stimulation. The shunt, supported by increased argininosuccinate synthase (ASS1) expression, also leads to increased cytosolic fumarate levels and fumarate-mediated protein succination. Pharmacological inhibition and genetic ablation of the tricarboxylic acid cycle enzyme fumarate hydratase (FH) further increases intracellular fumarate levels. Mitochondrial respiration is also suppressed and mitochondrial membrane potential increased. RNA sequencing and proteomics analyses demonstrate that there are strong inflammatory effects resulting from FH inhibition. Notably, acute FH inhibition suppresses interleukin-10 expression, which leads to increased tumour necrosis factor secretion, an effect recapitulated by fumarate esters. Moreover, FH inhibition, but not fumarate esters, increases interferon-ß production through mechanisms that are driven by mitochondrial RNA (mtRNA) release and activation of the RNA sensors TLR7, RIG-I and MDA5. This effect is recapitulated endogenously when FH is suppressed following prolonged lipopolysaccharide stimulation. Furthermore, cells from patients with systemic lupus erythematosus also exhibit FH suppression, which indicates a potential pathogenic role for this process in human disease. We therefore identify a protective role for FH in maintaining appropriate macrophage cytokine and interferon responses.


Asunto(s)
Fumarato Hidratasa , Interferón beta , Macrófagos , Mitocondrias , ARN Mitocondrial , Humanos , Argininosuccinato Sintasa/metabolismo , Ácido Argininosuccínico/metabolismo , Ácido Aspártico/metabolismo , Respiración de la Célula , Citosol/metabolismo , Fumarato Hidratasa/antagonistas & inhibidores , Fumarato Hidratasa/genética , Fumarato Hidratasa/metabolismo , Fumaratos/metabolismo , Interferón beta/biosíntesis , Interferón beta/inmunología , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Lupus Eritematoso Sistémico/enzimología , Macrófagos/enzimología , Macrófagos/inmunología , Macrófagos/metabolismo , Potencial de la Membrana Mitocondrial , Metabolómica , Mitocondrias/genética , Mitocondrias/metabolismo , ARN Mitocondrial/metabolismo
4.
QJM ; 116(7): 502-507, 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-36661317

RESUMEN

Severe coronavirus disease 2019 (COVID-19) is characterized by respiratory failure, shock or multiorgan dysfunction, often accompanied by systemic hyperinflammation and dysregulated cytokine release. These features are linked to the intense and rapid stimulation of the innate immune response. The NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome is a central player in inflammatory macrophage activation which via caspase-1 activation leads to the release of the mature forms of the proinflammatory cytokines interleukin (IL)-1ß and IL-18, and via cleavage of Gasdermin D pyroptosis, an inflammatory form of cell death. Here, we discuss the role of NLRP3 activation in COVID-19 and clinical trials currently underway to target NLRP3 to treat severe COVID-19.


Asunto(s)
COVID-19 , Inflamasomas , Humanos , Citocinas , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
5.
FASEB J ; 35(12): e21974, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34793601

RESUMEN

The electron transport chain (ETC) couples oxidative phosphorylation (OXPHOS) with ATP synthase to drive the generation of ATP. In immune cells, research surrounding the ETC has drifted away from bioenergetics since the discovery of cytochrome c (Cyt c) release as a signal for programmed cell death. Complex I has been shown to generate reactive oxygen species (ROS), with key roles identified in inflammatory macrophages and T helper 17 cells (TH 17) cells. Complex II is the site of reverse electron transport (RET) in inflammatory macrophages and is also responsible for regulating fumarate levels linking to epigenetic changes. Complex III also produces ROS which activate hypoxia-inducible factor 1-alpha (HIF-1α) and can participate in regulatory T cell (Treg ) function. Complex IV is required for T cell activation and differentiation and the proper development of Treg subsets. Complex V is required for TH 17 differentiation and can be expressed on the surface of tumor cells where it is recognized by anti-tumor T and NK cells. In this review, we summarize these findings and speculate on the therapeutic potential of targeting the ETC as an anti-inflammatory strategy.


Asunto(s)
Complejo IV de Transporte de Electrones/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Inflamación/inmunología , Mitocondrias/fisiología , Especies Reactivas de Oxígeno/metabolismo , Animales , Transporte de Electrón , Humanos , Inflamación/metabolismo , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...