Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Toxics ; 12(4)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38668496

RESUMEN

The iron-modified coal gasification slag (Fe-CGS) material has excellent performance in purifying heavy-metal-contaminated water due to its good surface properties and adsorption capacities. However, it is unclear whether it can provide long-term simultaneous stabilization of Cd and As in composite-contaminated soils in extreme environments. This study investigated the long-term stabilization of Cd and As in acidic (JLG) and alkaline (QD) soils by simulating prolonged heavy rainfall with the addition of Fe-CGS. Multiple extraction methods were used to analyze the immobilization mechanisms of Cd and As in soil and their effects on bioavailability. The results indicate that the stabilization efficiency was related to the dosage of Fe-CGS. The concentrations of Cd and As in the JLG soil leachate were reduced by 77.6% (2.0 wt%) and 87.8% (1.0 wt%), respectively. Additionally, the availability of Cd and As decreased by 46.7% (2.0 wt%) and 53.0% (1.0 wt%), respectively. In the QD soil leachate, the concentration of Cd did not significantly change, while the concentration of As decreased by 92.3% (2.0 wt%). Furthermore, the availability of Cd and As decreased by 22.1% (2.0 wt%) and 40.2% (1.0 wt%), respectively. Continuous extraction revealed that Fe-CGS facilitated the conversion of unstable, acid-soluble Cd into oxidizable Cd and acid-soluble Cd. Additionally, it promoted the transformation of both non-specifically and specifically adsorbed As into amorphous iron oxide-bound and residual As. Fe-CGS effectively improved the soil pH, reduced the bioavailability of Cd and As, and blocked the migration of Cd and As under extreme rainfall leaching conditions. It also promoted the transformation of Cd and As into more stable forms, exhibiting satisfactory long-term stabilization performance for Cd and As.

2.
Viruses ; 15(2)2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36851700

RESUMEN

The next-generation sequencing method was developed in the second half of the 2000s and marked the beginning of high-throughput sequencing (HTS) analyses of viral communities [...].


Asunto(s)
Ecología , Virus de Plantas , Virus de Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento
3.
J Virol ; 96(9): e0031822, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35435725

RESUMEN

In this study, a novel positive-sense single-stranded RNA (+ssRNA) mycovirus, tentatively named Colletotrichum fructicola RNA virus 1 (CfRV1), was identified in the phytopathogenic fungus Colletotrichum fructicola. CfRV1 has seven genomic components, encoding seven proteins from open reading frames (ORFs) flanked by highly conserved untranslated regions (UTRs). Proteins encoded by ORFs 1, 2, 3, 5, and 6 are more similar to the putative RNA-dependent RNA polymerase (RdRp), hypothetical protein (P2), methyltransferase, and two hypothetical proteins of Hadaka virus 1 (HadV1), a capsidless 10- or 11-segmented +ssRNA virus, while proteins encoded by ORFs 4 and 7 showed no detectable similarity to any known proteins. Notably, proteins encoded by ORFs 1 to 3 also share considerably high similarity with the corresponding proteins of polymycoviruses. Phylogenetic analysis conducted based on the amino acid sequence of CfRV1 RdRp and related viruses placed CfRV1 and HadV1 together in the same clade, close to polymycoviruses and astroviruses. CfRV1-infected C. fructicola strains demonstrate a moderately attenuated growth rate and virulence compared to uninfected isolates. CfRV1 is capsidless and potentially encapsulated in vesicles inside fungal cells, as revealed by transmission electron microscopy. CfRV1 and HadV1 are +ssRNA mycoviruses closely related to polymycoviruses and astroviruses, represent a new linkage between +ssRNA viruses and the intermediate double-stranded RNA (dsRNA) polymycoviruses, and expand our understanding of virus diversity, taxonomy, evolution, and biological traits. IMPORTANCE A scenario proposing that dsRNA viruses evolved from +ssRNA viruses is still considered controversial due to intergroup knowledge gaps in virus diversity. Recently, polymycoviruses and hadakaviruses were found as intermediate dsRNA and +ssRNA stages, respectively, between +ssRNA and dsRNA viruses. Here, we identified a novel +ssRNA mycovirus, Colletotrichum fructicola RNA virus 1 (CfRV1), isolated from Colletotrichum fructicola in China. CfRV1 is phylogenetically related to the 10- or 11-segmented Hadaka virus 1 (HadV1) but consists of only seven genomic segments encoding two novel proteins. CfRV1 is naked and may be encapsulated in vesicles inside fungal cells, representing a potential novel lifestyle for multisegmented RNA viruses. CfRV1 and HadV1 are intermediate +ssRNA mycoviruses in the linkage between +ssRNA viruses and the intermediate dsRNA polymycoviruses and expand our understanding of virus diversity, taxonomy, and evolution.


Asunto(s)
Colletotrichum , Virus Fúngicos , Virus ARN , Colletotrichum/patogenicidad , Colletotrichum/virología , Virus Fúngicos/clasificación , Virus Fúngicos/genética , Genoma Viral , Sistemas de Lectura Abierta , Filogenia , Virus ARN/clasificación , Virus ARN/genética , ARN Viral/genética , ARN Polimerasa Dependiente del ARN
4.
Chemosphere ; 291(Pt 3): 133105, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34843834

RESUMEN

Odor pollution caused by toxic chemicals with low human olfactory thresholds, such as hydrogen sulfide (H2S), has become a major cause of environmental grievance world-wide. Although the low-temperature (<180 °C) catalytic oxidation of H2S using metal oxides has received widespread attention, desulfurization performance is not ideal. Herein, a series of Zn-Cu/Al2O3 catalysts were developed using an impregnation method based on the Al2O3 hydrophilicity and the effects of zinc loading on the catalyst physicochemical properties and performance were systematically studied. The catalysts were characterized using inductively coupled plasma-optical emission spectrometry (ICP-OES), N2 adsorption-desorption isotherms, scanning electron microscopy with energy dispersive spectrometry (SEM-EDS), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FTIR) and electron paramagnetic resonance (EPR). It was found that optimization of zinc doping could improve the hydrophilicity of the catalyst, and hence its activity. Catalytic activity was also dependent on operational parameters such as temperature, humidity and space velocity. The Zn3Cu3 catalyst exhibited the highest breakthrough capacity of 353.91 mg/g at 50 °C and at a relative humidity of 50%. The excellent desulfurization performance was attributed to oxygen vacancies contributed by CuO, Cu2O and ZnO, which facilitated the conversion of H2O into hydroxyl radicals. Consequently, a hydroxyl radical-induced desulfurization mechanism over Zn-Cu/Al2O3 is proposed. This work provides a potential green and efficient catalyst for the selective oxidation of H2S.


Asunto(s)
Zinc , Catálisis , Humanos , Oxidación-Reducción , Espectroscopía de Fotoelectrones , Temperatura
5.
Chemosphere ; 286(Pt 3): 131925, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34426284

RESUMEN

Iron-based catalysts were developed to achieve the hydrodechlorination (HDC)/oxidation of polychlorinated biphenyls (PCBs) from thermal desorption off-gas, and Fe3O4/γ-Al2O3 showed higher dechlorination efficiency than Fe2O3/γ-Al2O3. The optimal Fe loading resulted in 95.5% degradation efficiency and 76.9% toxicity reduction of gaseous PCBs, and the optimal Fe3O4/γ-Al2O3 exhibited excellent stability during a 60-h test. The gas chromatography-mass spectrometry analysis of intermediate products indicated the presence of two competitive degradation pathways, namely, hydrodechlorination and oxidation with Fe3O4/γ-Al2O3 as catalyst. During the first stage (reductive dechlorination), the reductive activity of iron-based catalysts was effectively enhanced in the presence of water, which was confirmed by density functional theory (DFT) calculations. The removal of chlorine atoms was found in the order of meta > para > ortho. During the second stage (oxidation), hydroxyl and superoxide anion radicals were found to attack PCBs on the surface of Fe3O4/γ-Al2O3. This study provides an insight into the HDC and oxidation mechanism of gaseous PCBs over iron-based catalysts.


Asunto(s)
Bifenilos Policlorados , Catálisis , Cloro , Hierro , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA