RESUMEN
Cationic oncolytic polypeptides have gained increasing attention owing to their ability to directly lyse cancer cells and activate potent antitumor immunity. However, the low tumor cell selectivity and inherent toxicity induced by positive charges of oncolytic polypeptides hinder their systemic application. Herein, a tumor microenvironment-responsive nanoparticle (DNP) is developed by the self-assembly of a cationic oncolytic polypeptide (PLP) with a pH-sensitive anionic polypeptide via electrostatic interactions. After the formation of DNP, the positive charges of PLP are shielded. DNPs can keep stable in physiological conditions (pH 7.4) but respond to acidic tumor microenvironment (pH 6.8) to release oncolytic PLP. As a result, DNPs evoke potent immunogenic cell death by disrupting cell membranes, damaging mitochondria and increasing intracellular levels of reactive oxygen species. In vivo results indicate that DNPs significantly improve the biocompatibility of PLP, and inhibit tumor growth, recurrence and metastasis by direct oncolysis and activation of antitumor immune responses. In summary, these results indicate that pH-sensitive DNPs represent a prospective strategy to improve the tumor selectivity and biosafety of cationic polymers for oncolytic immunotherapy.
RESUMEN
Here we report a brand-new bioactive polymer featuring sulfonium moieties that exhibits the capability of inducing immunogenic cell death (ICD) for anticancer therapy. The optimized polysulfonium presents a wide spectrum of potent anticancer activity and remarkable selectivity. In-depth mechanistic studies reveal that the polymer exerts its cytotoxic effects on cancer cells through a membrane-disrupting mechanism. This further initiates the release of a plethora of damage-associated molecular patterns, effectively triggering ICD and resulting in systemic anticancer immune responses. Notably, the compound demonstrated significant efficacy in suppressing tumor growth in the B16-F10 melanoma tumor model. Furthermore, it exhibits robust immune memory effects, effectively suppressing tumor recurrence and metastasis in both the rechallenge model and the lung metastatic tumor model. To the best of our knowledge, the study represents the pioneering exportation of cationic polysulfoniums, showcasing not only their remarkable safety and efficacy against primary tumors but also their unique ability in activating long-term immune memory.
Asunto(s)
Antineoplásicos , Muerte Celular Inmunogénica , Polímeros , Animales , Muerte Celular Inmunogénica/efectos de los fármacos , Ratones , Humanos , Línea Celular Tumoral , Polímeros/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Compuestos de Sulfonio/química , Compuestos de Sulfonio/farmacología , Compuestos de Sulfonio/uso terapéutico , Melanoma Experimental/inmunología , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/patologíaRESUMEN
Host defense peptide-mimicking cationic oncolytic polymers have attracted increasing attention for cancer treatment in recent years. However, polymers with large amounts of positive charge may cause rapid clearance and severe off-target toxicity. To facilitate in vivo application, an alkaline phosphatase (ALP)-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been reported in this work. C12-PLL/PA could be hydrolyzed into the active form of the oncolytic polypeptide (C12-PLL) by the extracellular alkaline phosphatase within solid tumors, thereby resulting in the conversion of the negative charge to positive charge and restoring its membrane-lytic activity. Detailed mechanistic studies showed that C12-PLL/PA could effectively destroy cancer cell membranes and subsequently result in rapid necrosis of cancer cells. More importantly, C12-PLL/PA significantly inhibited the tumor growth in the 4T1 orthotopic breast tumor model with negligible side effects. In summary, these findings demonstrated that the shielding of the amino groups with phosphate groups represents a secure and effective strategy to develop cationic oncolytic polypeptide, which represents a valuable reference for the design of enzyme-activated oncolytic polymers. STATEMENT OF SIGNIFICANCE: Recently, there has been a growing interest in fabricating host defense peptide-mimicking cationic oncolytic polymers for cancer therapy. However, there remain concerns about the tumor selectivity and off-target toxicity of these cationic polymers. In this study, an alkaline phosphatase-responsive oncolytic polypeptide precursor (C12-PLL/PA) has been developed to selectively target cancer cells while sparing normal cells. Mechanistic investigations demonstrated that C12-PLL/PA effectively disrupted cancer cell membranes, leading to rapid necrosis. Both in vitro and in vivo experiments showed promising anticancer activity and reliable safety of C12-PLL/PA. The findings suggest that this synthetic enzyme-responsive polypeptide holds potential as a tumor-specific oncolytic polymer, paving the way for future applications in cancer therapy.
Asunto(s)
Fosfatasa Alcalina , Péptidos , Animales , Fosfatasa Alcalina/metabolismo , Péptidos/química , Péptidos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Antineoplásicos/farmacología , Antineoplásicos/uso terapéuticoRESUMEN
Drug resistance significantly hampers the clinical application of existing platinum-based anticancer drugs. New platinum medications that possess distinct mechanisms of action are highly desired for the treatment of Pt-resistant cancers. Herein, a nanoscale trans-platinum(II)-based supramolecular coordination self-assembly (Pt-TCPP-BA) is prepared via using trans-[PtCl2(pyridine)(NH3)] (transpyroplatin), tetracarboxylporphyrin (TCPP), and benzoic acid (BA) as building blocks to combat drug resistance in platinum-based chemotherapy. Mechanistic studies indicate that Pt-TCPP-BA shows a hydrogen-peroxide-responsive dissociation behavior along with the generation of bioactive trans-Pt(II) and TCPP-Pt species. Different from cisplatin, these degradation products interact with DNA via interstrand cross-links and small groove binding, and induce significant upregulation of cell-death-related proteins such as p53, cleaved caspase 3, p21, and phosphorylated H2A histone family member X in cisplatin-resistant cancer cells. As a result, Pt-TCPP-BA exhibits potent killing effects against Pt-resistant tumors both in vitro and in vivo. Overall, this work not only provides a new platinum drug for combating drug-resistant cancer but also offers a new paradigm for the development of platinum-based supramolecular anticancer drugs.
Asunto(s)
Antineoplásicos , Platino (Metal) , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Línea Celular Tumoral , Animales , Platino (Metal)/química , Platino (Metal)/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Ratones , Compuestos Organoplatinos/química , Compuestos Organoplatinos/farmacología , Cisplatino/farmacología , Cisplatino/química , ADN/química , ADN/metabolismo , Apoptosis/efectos de los fármacosRESUMEN
Real-time biodistribution monitoring and enhancing the therapeutic efficacy of platinum(II)-based anticancer drugs are urgently required to elevate their clinical performance. Herein, a tetraphenylethene derivative (TP) with aggregation-induced emission (AIE) properties and an iodine atom are selected as ligands to endow platinum (II) complex TP-Pt-I with real-time in vivo self-tracking ability by fluorescence (FL) and computerized tomography (CT) imaging, and improved anticancer efficacy by the combination of chemotherapy and photodynamic therapy. Especially, benefiting from the formation of a donor-acceptor-donor structure between the AIE photosensitizer TP and Pt-I moiety, the heavy atom effects of Pt and I, and the presence of I, TP-Pt-I displayed red-shifted absorption and emission wavelengths, enhanced ROS generation efficiency, and improved CT imaging capacity compared with the pristine TP and the control agent TP-Pt-Cl. As a result, the enhanced intratumoral accumulation of TP-Pt-I loaded nanoparticles is readily revealed by dual-modal FL and CT imaging with high contrast. Meanwhile, the TP-Pt-I nanoparticles show significantly improved tumor growth-inhibiting effects on an MCF-7 xenograft murine model by combining the chemotherapeutic effects of platinum(II) and the photodynamic effects of TP. This self-tracking therapeutic complex thus provides a new strategy for improving the therapeutic outcomes of platinum(II)-based anticancer drugs.
Asunto(s)
Yodo , Fotoquimioterapia , Platino (Metal) , Fotoquimioterapia/métodos , Humanos , Animales , Yodo/química , Platino (Metal)/química , Platino (Metal)/farmacología , Línea Celular Tumoral , Tomografía Computarizada por Rayos X , Ratones , Ratones Desnudos , Nanopartículas/química , Etilenos/química , Etilenos/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Especies Reactivas de Oxígeno/metabolismo , EstilbenosRESUMEN
Sonodynamic therapy (SDT) is garnering considerable attention in cancer treatment due to its non-invasive nature and the potential of spatiotemporal control. However, the high level of glutathione (GSH) in cancer cells can alleviate the SDT-mediated ROS-damages, resulting in a reduced SDT effect. Here, a two-in-one nano-prodrug for photoacoustic imaging-guided enhanced SDT against skin cancers is synthesized. A dual-prodrug molecule (DOA) of sulfide dioxide (SO2 ) and 5-aminolevulinic acid (ALA) is first synthesized and then co-assembled with methoxyl poly(ethylene glycol)-b-poly(l-lysine) (mPEG-b-PLL) to generate the two-in-one prodrug nanoparticles (P-DOA NPs). The P-DOA NPs simultaneously released ALA and SO2 in response to the overexpressed GSH in tumor cells. The released ALA is metabolically converted into protoporphyrin IX (PpIX) in tumor cells for SDT and photoacoustic imaging. Meanwhile, the released SO2 , together with the consumption of GSH based on the reaction of DOA in P-DOA NPs with intracellular GSH, can significantly increase the intracellular ROS content, leading to enhanced SDT. As a result, the P-DOA NPs significantly inhibited the growth of melanoma and squamous cell carcinoma xenografts in mouse models under the guidance of real-time photoacoustic imaging. Therefore, this novel two-in-one nano-prodrug is promising for effective SDT against skin cancers.