Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Inorg Chem ; 56(5): 2919-2925, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28218528

RESUMEN

A metal-organic framework (MOF), {(Me2NH2)2[Zn6(µ4-O)(ad)4(BPDC)4]}n (JXNU-4; ad- = adeninate), with an anionic three-dimensional (3D) framework constructed from one-dimensional (1D) columnar [Zn6(ad)4(µ4-O)]n secondary building units (SBUs) and 4,4'-biphenyldicarboxylate (BPDC2-) ligand, was prepared. The anionic 3D framework has 1D square channels with an aperture of about 9.8 Å and exhibits a carboxylate-O-decorated pore environment. The microporous nature of JXNU-4 was established by the N2 adsorption data, which gives Langmuir and Brumauer-Emmett-Teller surface areas of 1800 and 1250 m2 g-1, respectively. Noticeably, JXNU-4 shows potential as a separation agent for the selective removal of propane and ethane from natural gas with high selectivities of 144 for C3H8/CH4 (5:95) and 14.6 for C2H6/CH4 (5:95), respectively. Most importantly, JXNU-4 shows an aqueous-phase adsorption of a positively charged ion of methylene blue selectively over a negatively charged ion of resorufin, which is pertinent to the anionic nature of the framework, and provides a size-exclusive sieving of methylene blue over other positively charged ions of Janus Green B and ethyl violet, which is relevant to its pore structure, enabling the efficient aqueous-phase separation of organic dyes.

2.
Inorg Chem ; 55(12): 6271-7, 2016 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-27267985

RESUMEN

A novel sulfonate-carboxylate ligand of biphenyl-3,3'-disulfonyl-4,4'-dicarboxylic acid (H4-BPDSDC) and its lanthanide-organic frameworks {[LnK(BPDSDC)(DMF)(H2O)]·x(solvent)}n (JXNU-2, where JXNU denotes Jiangxi Normal University, DMF indicates dimethylformamide, and Ln = Sm(3+), Eu(3+), and Pr(3+)) were synthesized and structurally characterized. The three isomorphous lanthanide compounds feature three-dimensional frameworks constructed from one-dimensional (1D) rod-shaped heterometallic Ln-K secondary building units and are an illustration of a Kagome-like lattice with large 1D hexagonal channels and small 1D trigonal channels. The porous material of the representive JXNU-2(Sm) has an affinity to quadrupolar molecules such as CO2 and C2H2. In addition, the JXNU-2(Sm) compound exhibits humidity- and temperature-dependent proton conductivity with a large value of 1.11 × 10(-3) S cm(-1) at 80 °C and 98% relative humidity. The hydrophilic sulfonate group on the surface of channels facilitates enrichment of the solvate water molecules in the channels, which enhances the proton conductivity of this material. Moreover, the JXNU-2(Eu) material with the characteristic bright red color shows the potential for recognition of K(+) and Fe(3+) ions. The enhancing Eu(3+) luminescence with the K(+) ion and quenching Eu(3+) luminescence with the Fe(3+) ion can be associated with the functional groups of the organic ligand.

3.
Inorg Chem ; 55(11): 5578-84, 2016 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-27186985

RESUMEN

A series of dinuclear Dy(III) compounds with the general formula [Dy2(µ2-anthc)4(anthc)2(L)2] (anthc(-) = 9-anthracenecarboxylate, L = 2,2'-bipyridyl (1), 1,10-phenanthroline (2), and 4,7-dimethyl-1,10-phenanthroline (3)) were synthesized and magnetically characterized. These compounds exhibit single-molecule magnet (SMM) behavior in the absence of the direct-current field, which is rarely observed for carboxylate-bridged dinuclear Dy2 system. With the first coordination sphere of Dy(III) centers being fixed, the energy barrier was modulated by sequentially modifying the terminal neutral L ligands in this Dy2 system. Theoretical calculations revealed that the symmetry of the charge distribution surrounding the Dy(III) centers in 1-3 is the decisive factor to determine the relaxation of the SMMs. The combination of the larger charge distribution along the magnetic axis and lower charge distribution in the equatorial plane (hard plane) formed by five coplanar coordination atoms including two N atoms provided by an L ligand led to a strong easy-axis ligand field in these compounds. This work presents a rational method to modulate the dynamic magnetic relaxation of the lanthanide SMMs through fine-tuning electrostatic potential of the atoms on the hard plane.

4.
Inorg Chem ; 54(23): 11362-8, 2015 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-26579729

RESUMEN

A new compound, {[Co(bmzbc)2] · 2DMF}n (JXNU-1, JXNU denotes Jiangxi Normal University), based on the 4-(benzimidazole-1-yl)benzoate (bmzbc(-)) ligand has been synthesized and structurally characterized. The Co(II) ions are bridged by the rod-like bmzbc(-) ligands to give a two-dimensional (2D) sheet wherein the Co(II) ions are spatially separated from each other by the long bmzbc(-) rods. The 2D sheets are further stacked into a 3D framework with 1D channels occluding the guest DMF molecules. Detailed magnetic studies show that the individual octahedral Co(II) ions in JXNU-1 exhibit field-induced slow magnetic relaxation, which is characteristic behavior of single-ion magnets (SIMs). The rarely observed positive value of zero-field splitting (ZFS) parameter D for the Co(II) ion in JXNU-1 demonstrates that JXNU-1 is a unique example of Co(II)-based SIMs with easy-plane anisotropy, which is also confirmed by the calculations. The microporous nature of JXNU-1 was established by measuring CO2 sorption isotherms. The abrupt changes observed in the C3H8 and C2H6 adsorption isotherms indicate that a structural transformation occurred in the gas-loading process. The long connection between the magnetic metal centers in JXNU-1 meets the requirements for construction of porosity and SIM in a well-defined network, harmoniously providing a good candidate of functional molecular materials exhibiting SIM and porosity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA