Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
J Invest Dermatol ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38838771

RESUMEN

Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early pro-inflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to pro-resolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. Here, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet also accelerated timely switching from M1 to M2 phenotypes. Exosomes inhibition dysregulated macrophage responses resulting in aberrant inflammation and impaired healing, while provision of exogenous fibroblast exosomes corrected defects. Topical application of fibroblast exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.

2.
Nat Protoc ; 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38745111

RESUMEN

Microbial signatures have emerged as promising biomarkers for disease diagnostics and prognostics, yet their variability across different studies calls for a standardized approach to biomarker research. Therefore, we introduce xMarkerFinder, a four-stage computational framework for microbial biomarker identification with comprehensive validations from cross-cohort datasets, including differential signature identification, model construction, model validation and biomarker interpretation. xMarkerFinder enables the identification and validation of reproducible biomarkers for cross-cohort studies, along with the establishment of classification models and potential microbiome-induced mechanisms. Originally developed for gut microbiome research, xMarkerFinder's adaptable design makes it applicable to various microbial habitats and data types. Distinct from existing biomarker research tools that typically concentrate on a singular aspect, xMarkerFinder uniquely incorporates a sophisticated feature selection process, specifically designed to address the heterogeneity between different cohorts, extensive internal and external validations, and detailed specificity assessments. Execution time varies depending on the sample size, selected algorithm and computational resource. Accessible via GitHub ( https://github.com/tjcadd2020/xMarkerFinder ), xMarkerFinder supports users with diverse expertise levels through different execution options, including step-to-step scripts with detailed tutorials and frequently asked questions, a single-command execution script, a ready-to-use Docker image and a user-friendly web server ( https://www.biosino.org/xmarkerfinder ).

3.
iScience ; 27(4): 109545, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38617557

RESUMEN

Dysregulated macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2 phenotypes underlies impaired cutaneous wound healing. This study reveals Vγ4+ γδ T cells spatiotemporally calibrate macrophage trajectories during skin repair via sophisticated interferon-γ (IFN-γ) conditioning across multiple interconnected tissues. Locally within wound beds, infiltrating Vγ4+ γδ T cells directly potentiate M1 activation and suppress M2 polarization thereby prolonging local inflammation. In draining lymph nodes, infiltrated Vγ4+ γδ T cells expand populations of IFN-γ-competent lymphocytes which disseminate systemically and infiltrate into wound tissues, further enforcing M1 macrophages programming. Moreover, Vγ4+γδ T cells flushed into bone marrow stimulate increased IFN-γ production, which elevates the output of pro-inflammatory Ly6C+monocytes. Mobilization of these monocytes continually replenishes the M1 macrophage pool in wounds, preventing phenotypic conversion to M2 activation. Thus, multi-axis coordination of macrophage activation trajectories by trafficking Vγ4+ γδ T cells provides a sophisticated immunological mechanism regulating inflammation timing and resolution during skin repair.

4.
Cogn Process ; 2024 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-38492094

RESUMEN

Due to the easing of the pandemic, public policies no longer mandated people to wear masks. People can choose to no wear or wear different types of masks based on personal preferences and safety perceptions during daily interaction. Available information about the influence of face mask type on interpersonal distance (IPD) by different aging populations is still lacking. Thus, this study aimed to investigate the face mask type (no wear, cloth, medical and N95 mask) and age group effect of avatars (children, adults and older adults) on IPD perception, threat feeling and physiological skin conductance response under active and passive approaching. One hundred participants with a range from 20 to 35 years old were recruited for this study. Twelve avatars (three age groups*four face mask conditions) were created and applied in a virtual reality environment. The results showed that age group, mask type and approach mode had significant effects on IPD and subjective threat feeling. A non-significant effect was found on skin conductance responses. Participants maintained a significantly longer IPD when facing the older adults, followed by adults and then children. In the passive approach condition, people tended to maintain a significantly greater comfort distance than during the active approach. For the mask type effect, people kept a significantly largest and shortest IPD when facing an avatar with no mask or the N95 mask, respectively. A non-significant IPD difference was found between the N95 and medical mask. Additionally, based on the subjective threat feeling, facing an avatar wearing a medical mask generated the lowest threat feeling compared to the others. The findings of this study indicated that wearing medical masks provided a benefit in bringing people closer for interaction during specific situations. Understanding that mask-wearing, especially medical one, brought to shortest IPD when compared to the unmasked condition can be utilized to enhance safety measures in crowded public spaces and health-care settings. This information could guide the development of physical distancing recommendations, taking into account both the type of mask and the age groups involved, to ensure the maintenance of appropriate distances.

5.
Bioact Mater ; 36: 317-329, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38496032

RESUMEN

The integrative regeneration of both articular cartilage and subchondral bone remains an unmet clinical need due to the difficulties of mimicking spatial complexity in native osteochondral tissues for artificial implants. Layer-by-layer fabrication strategies, such as 3D printing, have emerged as a promising technology replicating the stratified zonal architecture and varying microstructures and mechanical properties. However, the dynamic and circulating physiological environments, such as mass transportation or cell migration, usually distort the pre-confined biological properties in the layered implants, leading to undistinguished spatial variations and subsequently inefficient regenerations. This study introduced a biomimetic calcified interfacial layer into the scaffold as a compact barrier between a cartilage layer and a subchondral bone layer to facilitate osteogenic-chondrogenic repair. The calcified interfacial layer consisting of compact polycaprolactone (PCL), nano-hydroxyapatite, and tasquinimod (TA) can physically and biologically separate the cartilage layer (TA-mixed, chondrocytes-load gelatin methacrylate) from the subchondral bond layer (porous PCL). This introduction preserved the as-designed independent biological environment in each layer for both cartilage and bone regeneration, successfully inhibiting vascular invasion into the cartilage layer and preventing hyaluronic cartilage calcification owing to devascularization of TA. The improved integrative regeneration of cartilage and subchondral bone was validated through gross examination, micro-computed tomography (micro-CT), and histological and immunohistochemical analyses based on an in vivo rat model. Moreover, gene and protein expression studies identified a key role of Caveolin (CAV-1) in promoting angiogenesis through the Wnt/ß-catenin pathway and indicated that TA in the calcified layer blocked angiogenesis by inhibiting CAV-1.

6.
Biomed Mater ; 19(3)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38471163

RESUMEN

Exosomes, typically 30-150 nm in size, are lipid-bilayered small-membrane vesicles originating in endosomes. Exosome biogenesis is regulated by the coordination of various mechanisms whereby different cargoes (e.g. proteins, nucleic acids, and lipids) are sorted into exosomes. These components endow exosomes with bioregulatory functions related to signal transmission and intercellular communication. Exosomes exhibit substantial potential as drug-delivery nanoplatforms owing to their excellent biocompatibility and low immunogenicity. Proteins, miRNA, siRNA, mRNA, and drugs have been successfully loaded into exosomes, and these exosome-based delivery systems show satisfactory therapeutic effects in different disease models. To enable targeted drug delivery, genetic engineering and chemical modification of the lipid bilayer of exosomes are performed. Stimuli-responsive delivery nanoplatforms designed with appropriate modifications based on various stimuli allow precise control of on-demand drug delivery and can be utilized in clinical treatment. In this review, we summarize the general properties, isolation methods, characterization, biological functions, and the potential role of exosomes in therapeutic delivery systems. Moreover, the effective combination of the intrinsic advantages of exosomes and advanced bioengineering, materials science, and clinical translational technologies are required to accelerate the development of exosome-based delivery nanoplatforms.


Asunto(s)
Exosomas , MicroARNs , Exosomas/química , MicroARNs/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Proteínas/metabolismo , ARN Interferente Pequeño
7.
Neural Regen Res ; 19(11): 2430-2443, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38526280

RESUMEN

Ischemic stroke is a major cause of mortality and disability worldwide, with limited treatment options available in clinical practice. The emergence of stem cell therapy has provided new hope to the field of stroke treatment via the restoration of brain neuron function. Exogenous neural stem cells are beneficial not only in cell replacement but also through the bystander effect. Neural stem cells regulate multiple physiological responses, including nerve repair, endogenous regeneration, immune function, and blood-brain barrier permeability, through the secretion of bioactive substances, including extracellular vesicles/exosomes. However, due to the complex microenvironment of ischemic cerebrovascular events and the low survival rate of neural stem cells following transplantation, limitations in the treatment effect remain unresolved. In this paper, we provide a detailed summary of the potential mechanisms of neural stem cell therapy for the treatment of ischemic stroke, review current neural stem cell therapeutic strategies and clinical trial results, and summarize the latest advancements in neural stem cell engineering to improve the survival rate of neural stem cells. We hope that this review could help provide insight into the therapeutic potential of neural stem cells and guide future scientific endeavors on neural stem cells.

8.
Heliyon ; 10(1): e24116, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38283248

RESUMEN

Background: Sarcopenia is an intrinsic factor that leads to balance disorders and falls in older adults. However, the characterization of sarcopenia-related postural balance deficits remains unclear. Aims: This study aimed to explore the balance performance and postural control strategy in older adults with sarcopenia during static stance tasks using force platforms and surface electromyography. Methods: Older adults with right-sided dominance were recruited, including 27 adults with sarcopenia and 27 healthy counterparts. Postural sway was measured with eyes open/closed on rigid/compliant surfaces. The time- and frequency-domain indexes of bilateral lower extremity muscle activity were simultaneously recorded. Results: The postural sway and activity of multiple lower extremity muscles in the sarcopenia group were increased (P < 0.05). The amplitude contribution ratio of the right tibialis anterior muscle (larger in sarcopenia), co-contraction ratio of right ankle dorsiflexion (smaller in sarcopenia), and mean power frequency and median frequency of the left gluteus maximus muscle (smaller in sarcopenia) had main effects of grouping (P < 0.001, η2p = 0.06-0.10). All of them had discrimination for sarcopenia (area under the curve = 0.639-0.657, P < 0.001) and were correlated with balance function measurement in sarcopenia (|rs| = 0.22-0.44, P < 0.05). Conclusion: The results of this study suggest that older adults with sarcopenia have decreased balance function and increased cost of electrophysiology. They were found to prefer the postural strategy of dominant ankle dorsiflexion and demonstrated overactivity of the dominant tibialis anterior muscles and fatigue vulnerability of the nondominant gluteus maximus. Improvements in these postural features may have balance benefits.

9.
Commun Biol ; 7(1): 24, 2024 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182885

RESUMEN

Excess body weight (EBW) increases the risk of colorectal cancer (CRC) and is linked to lower colonoscopy compliance. Here, we extensively analyzed 981 metagenome samples from multiple cohorts to pinpoint the specific microbial signatures and their potential capability distinguishing EBW patients with CRC. The gut microbiome displayed considerable variations between EBW and lean CRC. We identify 44 and 37 distinct multi-kingdom microbial species differentiating CRC and controls in EBW and lean populations, respectively. Unique bacterial-fungal associations are also observed between EBW-CRC and lean-CRC. Our analysis revealed specific microbial functions in EBW-CRC, including D-Arginine and D-ornithine metabolism, and lipopolysaccharide biosynthesis. The best-performing classifier for EBW-CRC, comprising 12 bacterial and three fungal species, achieved an AUROC of 0.90, which was robustly validated across three independent cohorts (AUROC = 0.96, 0.94, and 0.80). Pathogenic microbial species, Anaerobutyricum hallii, Clostridioides difficile and Fusobacterium nucleatum, are EBW-CRC specific signatures. This work unearths the specific multi-kingdom microbial signatures for EBW-CRC and lean CRC, which may contribute to precision diagnosis and treatment of CRC.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Humanos , Metagenoma , Arginina , Microbioma Gastrointestinal/genética , Aumento de Peso , Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/genética
10.
bioRxiv ; 2024 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36747710

RESUMEN

Mammalian cortex features a vast diversity of neuronal cell types, each with characteristic anatomical, molecular and functional properties. Synaptic connectivity powerfully shapes how each cell type participates in the cortical circuit, but mapping connectivity rules at the resolution of distinct cell types remains difficult. Here, we used millimeter-scale volumetric electron microscopy1 to investigate the connectivity of all inhibitory neurons across a densely-segmented neuronal population of 1352 cells spanning all layers of mouse visual cortex, producing a wiring diagram of inhibitory connections with more than 70,000 synapses. Taking a data-driven approach inspired by classical neuroanatomy, we classified inhibitory neurons based on the relative targeting of dendritic compartments and other inhibitory cells and developed a novel classification of excitatory neurons based on the morphological and synaptic input properties. The synaptic connectivity between inhibitory cells revealed a novel class of disinhibitory specialist targeting basket cells, in addition to familiar subclasses. Analysis of the inhibitory connectivity onto excitatory neurons found widespread specificity, with many interneurons exhibiting differential targeting of certain subpopulations spatially intermingled with other potential targets. Inhibitory targeting was organized into "motif groups," diverse sets of cells that collectively target both perisomatic and dendritic compartments of the same excitatory targets. Collectively, our analysis identified new organizing principles for cortical inhibition and will serve as a foundation for linking modern multimodal neuronal atlases with the cortical wiring diagram.

11.
J Chem Inf Model ; 64(7): 2817-2828, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-37167092

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with a broad spectrum of histologic manifestations. The rapidly growing prevalence and the complex pathologic mechanisms of NAFLD pose great challenges for treatment development. Despite tremendous efforts devoted to drug development, there are no FDA-approved medicines yet. Here, we present NAFLDkb, a specialized knowledge base and platform for computer-aided drug design against NAFLD. With multiperspective information curated from diverse source materials and public databases, NAFLDkb presents the associations of drug-related entities as individual knowledge graphs. Practical drug discovery tools that facilitate the utilization and expansion of NAFLDkb have also been implemented in the web interface, including chemical structure search, drug-likeness screening, knowledge-based repositioning, and research article annotation. Moreover, case studies of a knowledge graph repositioning model and a generative neural network model are presented herein, where three repositioning drug candidates and 137 novel lead-like compounds were newly established as NAFLD pharmacotherapy options reusing data records and machine learning tools in NAFLDkb, suggesting its clinical reliability and great potential in identifying novel drug-disease associations of NAFLD and generating new insights to accelerate NAFLD drug development. NAFLDkb is freely accessible at https://www.biosino.org/nafldkb and will be updated periodically with the latest findings.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/patología , Reproducibilidad de los Resultados , Desarrollo de Medicamentos
12.
Physiol Genomics ; 56(2): 221-234, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38073489

RESUMEN

Colorectal cancer (CRC) exhibits pronounced heterogeneity and is categorized into four widely accepted consensus molecular subtypes (CMSs) with unique tumor microenvironments (TMEs). However, the intricate landscape of the microbiota and host-microbiota interactions within these TMEs remains elusive. Using RNA-sequencing data from The Cancer Genome Atlas, we analyzed the host transcriptomes and intratumoral microbiome profiles of CRC samples. Distinct host genes and microbial genera were identified among the CMSs. Immune microenvironments were evaluated using CIBERSORTx and ESTIMATE, and microbial coabundance patterns were assessed with FastSpar. Through LASSO penalized regression, we explored host-microbiota associations for each CMS. Our analysis revealed distinct host gene signatures within the CMSs, which encompassed ferroptosis-related genes and specific immune microenvironments. Moreover, we identified 293, 153, 66, and 109 intratumoral microbial genera with differential abundance, and host-microbiota associations contributed to distinct TMEs, characterized by 829, 1,270, 634, and 1,882 robust gene-microbe associations for each CMS in CMS1-CMS4, respectively. CMS1 featured inflammation-related HSF1 activation and gene interactions within the endothelin pathway and Flammeovirga. Integrin-related genes displayed positive correlations with Sutterella in CMS2, whereas CMS3 spotlighted microbial associations with biosynthetic and metabolic pathways. In CMS4, genes involved in collagen biosynthesis showed positive associations with Sutterella, contributing to disruptions in homeostasis. Notably, immune-rich subtypes exhibited pronounced ferroptosis dysregulation, potentially linked to tissue microbial colonization. This comprehensive investigation delineates the diverse landscapes of the TME within each CMS, incorporating host genes, intratumoral microbiota, and their complex interactions. These findings shed light on previously uncharted mechanisms underpinning CRC heterogeneity and suggest potential therapeutic targets.NEW & NOTEWORTHY This study determined the following: 1) providing a comprehensive landscape of consensus molecular subtype (CMS)-specific tumor microenvironments (TMEs); 2) constructing CMS-specific networks, including host genes, intratumoral microbiota, and enriched pathways, analyzing their associations to uncover unique patterns that demonstrate the intricate interplay within the TME; and 3) revealing a connection between immune-rich subtypes and ferroptosis activation, suggesting a potential regulatory role of the microbiota in ferroptosis dysregulation of the colorectal cancer TME.


Asunto(s)
Neoplasias Colorrectales , Humanos , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Microambiente Tumoral/genética , Transcriptoma
13.
Plants (Basel) ; 12(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38005709

RESUMEN

Premature senescence is a common occurrence in rice production, and seriously affects rice plants' nutrient utilization and growth. A total of 120 recombinant inbred lines (RILs) were obtained from successive self-crossing of F12 generations derived from Huazhan and Nekken2. The superoxide dismutase (SOD) activity, malondialdehyde (MDA), content and catalase (CAT) activity related to the anti-senescence traits and enzyme activity index of rice were measured for QTL mapping using 4858 SNPs. Thirteen QTLs related to anti-senescence were found, among which the highest LOD score was 5.70. Eighteen anti-senescence-related genes were found in these regions, and ten of them differed significantly between the parents. It was inferred that LOC_Os01g61500, LOC_Os01g61810, and LOC_Os04g40130 became involved in the regulation of the anti-senescence molecular network upon upregulation of their expression levels. The identified anti-senescence-related QTLs and candidate genes provide a genetic basis for further research on the mechanism of the molecular network that regulates premature senescence.

15.
bioRxiv ; 2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37546753

RESUMEN

Advances in Electron Microscopy, image segmentation and computational infrastructure have given rise to large-scale and richly annotated connectomic datasets which are increasingly shared across communities. To enable collaboration, users need to be able to concurrently create new annotations and correct errors in the automated segmentation by proofreading. In large datasets, every proofreading edit relabels cell identities of millions of voxels and thousands of annotations like synapses. For analysis, users require immediate and reproducible access to this constantly changing and expanding data landscape. Here, we present the Connectome Annotation Versioning Engine (CAVE), a computational infrastructure for immediate and reproducible connectome analysis in up-to petascale datasets (~1mm3) while proofreading and annotating is ongoing. For segmentation, CAVE provides a distributed proofreading infrastructure for continuous versioning of large reconstructions. Annotations in CAVE are defined by locations such that they can be quickly assigned to the underlying segment which enables fast analysis queries of CAVE's data for arbitrary time points. CAVE supports schematized, extensible annotations, so that researchers can readily design novel annotation types. CAVE is already used for many connectomics datasets, including the largest datasets available to date.

16.
Front Plant Sci ; 14: 1206165, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404533

RESUMEN

Rice, a major food crop in China, contributes significantly to international food stability. Advances in rice genome sequencing, bioinformatics, and transgenic techniques have catalyzed Chinese researchers' discovery of novel genes that control rice yield. These breakthroughs in research also encompass the analysis of genetic regulatory networks and the establishment of a new framework for molecular design breeding, leading to numerous transformative findings in this field. In this review, some breakthroughs in rice yield traits and a series of achievements in molecular design breeding in China in recent years are presented; the identification and cloning of functional genes related to yield traits and the development of molecular markers of rice functional genes are summarized, with the intention of playing a reference role in the following molecular design breeding work and how to further improve rice yield.

17.
Artículo en Inglés | MEDLINE | ID: mdl-37307176

RESUMEN

There exists growing evidence that circRNAs are concerned with many complex diseases physiological processes and pathogenesis and may serve as critical therapeutic targets. Identifying disease-associated circRNAs through biological experiments is time-consuming, and designing an intelligent, precise calculation model is essential. Recently, many models based on graph technology have been proposed to predict circRNA-disease association. However, most existing methods only capture the neighborhood topology of the association network and ignore the complex semantic information. Therefore, we propose a Dual-view Edge and Topology Hybrid Attention model for predicting CircRNA-Disease Associations (DETHACDA), effectively capturing the neighborhood topology and various semantics of circRNA and disease nodes in a heterogeneous network. The 5-fold cross-validation experiments on circRNADisease indicate that the proposed DETHACDA achieves the area under receiver operating characteristic curve of 0.9882, better than four state-of-the-art calculation methods.

18.
J Perianesth Nurs ; 38(5): 738-744, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37318438

RESUMEN

PURPOSE: To explore the analgesic effect of the ice pack combined with serratus anterior plane block after thoracoscopic pulmonary resection. DESIGN: A randomized controlled trial design. METHODS: This prospective randomized controlled trial recruited patients who underwent thoracoscopic pneumonectomy in a grade A tertiary hospital from October 2021 to March 2022. The patients were randomly divided into the control group, the serratus anterior plane block group, the ice pack group, and the ice pack combined with serratus anterior plane block group. The analgesic effect was evaluated by collecting the postoperative visual analog score. FINDINGS: A total of 133 patients agreed to participate in this study, of which 120 patients were eventually included (n = 30/group). The primary outcome was that the pain in SAP block group, ice pack group, and ice pack combined with SAP block group decreased significantly within 24 hours compared with the control group (P < .05). Also, significant differences were noted in other secondary outcomes, such as Prince-Henry pain score within 12 hours, 15-item quality of recovery (QoR-15) score within 24 hours, and fever times within 24 hours. No significant difference was detected in the C-reactive protein value, white blood cell count, and the use of additional analgesics within 24 hours postoperatively (P > .05). CONCLUSIONS: For patients after thoracoscopic pneumonectomy, ice pack, serratus anterior plane block, and ice pack combined with serratus anterior plane block produce better postoperative analgesic effects than intravenous analgesia. The combined group exhibited the best outcomes.


Asunto(s)
Hielo , Neumonectomía , Humanos , Estudios Prospectivos , Dolor Postoperatorio/tratamiento farmacológico , Dolor Postoperatorio/prevención & control , Analgésicos , Analgesia Controlada por el Paciente
19.
Chin J Nat Med ; 21(3): 233-240, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37003645

RESUMEN

The stem and branch extract of Tripterygium wilfordii (Celastraceae) afforded seven new dihydroagarofuran sesquiterpene polyesters [tripterysines A-G (1-7)] and eight known ones (8-15). The chemical structures of these new compounds were established based on combinational analysis of HR-ESI-MS and NMR techniques. The absolute configurations of tripterysines A-C (1-3) and E-G (5-7) were determined by X-ray crystallographic analysis and circular dichroism spectra. All the compounds were screened for their inhibitory effect on inflammation through determining their inhibitory effect on nitric oxide production in LPS-induced RAW 264.7 cells and the secretion of inflammatory cytokines TNF-α and IL-6 in LPS-induced BV2 macrophages. Compound 9 exhibited significant inhibitory activity on NO production with an IC50 value of 8.77 µmol·L-1. Moreover, compound 7 showed the strongest inhibitory effect with the secretion of IL-6 at 27.36%.


Asunto(s)
Sesquiterpenos , Tripterygium , Tripterygium/química , Ésteres/farmacología , Interleucina-6 , Lipopolisacáridos/farmacología , Hojas de la Planta/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Óxido Nítrico/análisis , Sesquiterpenos/farmacología , Sesquiterpenos/química , Estructura Molecular
20.
Radiother Oncol ; 183: 109595, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36870606

RESUMEN

OBJECTIVES: To summarize the characteristics of local extension of eccentric and central nasopharyngeal carcinoma (NPC) by magnetic resonance imaging (MRI) and to improve clinical target volume (CTV) delineation. METHODS: MRI of 870 newly diagnosed NPC patients were reviewed. According to tumor distribution features, the NPCs were divided into eccentric and central lesions. RESULTS: All local invasions presented as continuous invasion from gross lesions and structures adjacent to the nasopharynx were more likely to be invaded. There were 240 (27.6%) and 630 (72.4%) cases with central and eccentric lesions, respectively. The spread of eccentric lesions was centered on the ipsilateral Rosenmüller's fossa; and most anatomic sites had significantly higher invasion rates in the ipsilateral side than the contralateral side (P < 0.05). However, they were at low risk of concurrent bilateral tumor invasion (<10%), except the prevertebral muscle (15.4%) and nasal cavity (13.8%). The extension of central NPCs was centered on the nasopharyngeal superior-posterior wall and was more common in the superior-posterior direction. Furthermore, bilateral tumor invasion into the anatomical sites was common. CONCLUSION: Local invasion of NPC was characterized by continuous invasion from proximal to distal sites. The eccentric and central lesions showed different invasion features. Individual CTV delineation should be based on the distribution characteristics of tumors. The eccentric lesions had a very low probability of invasion into the contralateral tissue; thus routine prophylactic radiation of contralateral parapharyngeal space and skull base foramina may not be necessary.


Asunto(s)
Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas/diagnóstico por imagen , Neoplasias Nasofaríngeas/radioterapia , Imagen por Resonancia Magnética , Invasividad Neoplásica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA