Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Bioresour Technol ; 402: 130767, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38692373

RESUMEN

The study assessed the effect of salinity and lead (Pb(II)) on the anammox sludge for nitrogen removal from saline wastewater. Results showed decreased nitrogen removal and specific anammox activity (SAA) with elevated salinity and Pb(II). SAA reduced from 541.3 ± 4.3 mg N g-1 VSS d-1 at 0.5 mg/L Pb(II) to 436.0 ± 0.2 mg N g-1 VSS d-1 at 30 g/L NaCl, further to 303.6 ± 7.1 mg N g-1 VSS d-1 under 30 g/L NaCl + 0.5 mg/L Pb(II). Notably, the combined inhibition at salinity (15-20 g/L NaCl) and Pb(II) (0.3-0.4 mg/L) exhibited synergistic effect, while higher salinity and Pb(II) aligned with independent inhibition models. Combined inhibition decreased protein/polysaccharides ratio, indicating more severe negative effect on anammox aggregation capacity. Metagenomics confirmed decreased Candidatus Kuenenia, and enhanced denitrification under elevated salinity and Pb(II) conditions. This study offers insights into anammox operation for treating saline wastewater with heavy metals.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38607491

RESUMEN

The massive use of antibiotics has led to the escalation of microbial resistance in aquatic environment, resulting in an increasing concern regarding antibiotic resistance genes (ARGs), posing a serious threat to ecological safety and human health. In this study, surface water samples were collected at eight sampling sites along the Yangtze River Estuary. The seasonal and spatial distribution patterns of 10 antibiotics and target genes in two major classes (sulfonamides and tetracyclines) were analyzed. The findings indicated a high prevalence of sulfonamide and tetracycline resistance genes along the Yangtze River Estuary. Kruskal-Wallis analysis revealed significant seasonal variations in the abundance of all target genes. The accumulation of antibiotic resistance genes in the coastal area of the Yangtze River Estuary can be attributed to the influence of urban instream runoff and the discharge of effluents from wastewater treatment plants. ANISOM analysis indicated significant seasonal differences in the microbial community structure. VPA showed that environmental factors contribute the most to ARG variation. PLS-PM demonstrate that environmental factors and microbial communities pose direct effect to ARG variation. Analysis of driving factors influencing ARGs in this study may shed new insights into the mechanism of the maintenance and propagation of ARGs.

3.
Adv Healthc Mater ; : e2304675, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688026

RESUMEN

The mitochondrial enzyme arginase-2 (Arg-2) is implicated in the pathophysiology of contrast-induced acute kidney injury (CI-AKI). Therefore, Arg-2 represents a candid target for CI-AKI prevention. Here, layer-by-layer (LbL) assembled renal-targeting polymeric nanoparticles are developed to efficiently deliver small interfering RNA (siRNA), knockdown Arg-2 expression in renal tubules, and prevention of CI-AKI is evaluated. First, near-infrared dye-loaded poly(lactic-co-glycolic acid) (PLGA) anionic cores are electrostatically coated with cationic chitosan (CS) to facilitate the adsorption and stabilization of Arg-2 siRNA. Next, nanoparticles are coated with anionic hyaluronan (HA) to provide protection against siRNA leakage and shielding against early clearance. Sequential electrostatic layering of CS and HA improves loading capacity of Arg-2 siRNA and yields LbL-assembled nanoparticles. Renal targeting and accumulation is enhanced by modifying the outermost layer of HA with a kidney targeting peptide (HA-KTP). The resultant kidney-targeting and siRNA loaded nanoparticles (PLGA/CS/HA-KTP siRNA) exhibit proprietary accumulation in kidneys and proximal tubular cells at 24 h post-tail vein injection. In iohexol-induced in vitro and in vivo CI-AKI models, PLGA/CS/HA-KTP siRNA delivery alleviates oxidative and nitrification stress, and rescues mitochondrial dysfunction while reducing apoptosis, thereby demonstrating a robust and satisfactory therapeutic effect. Thus, PLGA/CS/HA-KTP siRNA nanoparticles offer a promising candidate therapy to protect against CI-AKI.

4.
J Hazard Mater ; 470: 134166, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554511

RESUMEN

UV/peracetic acid (PAA) treatment presents a promising approach for antibiotic removal, but its effects on microbial community and proliferation of antibiotic resistance genes (ARGs) during the subsequent bio-treatment remain unclear. Thus, we evaluated the effects of the UV/PAA on tetracycline (TTC) degradation, followed by introduction of the treated wastewater into the bio-treatment system to monitor changes in ARG expression and biodegradability. Results demonstrated effective TTC elimination by the UV/PAA system, with carbon-centered radicals playing a significant role. Crucially, the UV/PAA system not only eliminated antibacterial activity but also inhibited potential ARG host growth, thereby minimizing the emergence and dissemination of ARGs during subsequent bio-treatment. Additionally, the UV/PAA system efficiently removed multi-antibiotic resistant bacteria and ARGs from the bio-treatment effluent, preventing ARGs from being released into the environment. Hence, we propose a multi-barrier strategy for treating antibiotic-containing wastewater, integrating UV/PAA pre-treatment and post-disinfection with bio-treatment. The inhibition of ARGs transmission by the integrated system was verified through actual soil testing, confirming its effectiveness in preventing ARGs dissemination in the surrounding natural ecosystem. Overall, the UV/PAA treatment system offers a promising solution for tackling ARGs challenges by controlling ARGs proliferation at the source and minimizing their release at the end of the treatment process.


Asunto(s)
Antibacterianos , Ácido Peracético , Rayos Ultravioleta , Aguas Residuales , Antibacterianos/farmacología , Antibacterianos/química , Ácido Peracético/farmacología , Tetraciclina/farmacología , Farmacorresistencia Microbiana/genética , Genes Bacterianos/efectos de los fármacos , Purificación del Agua/métodos , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/toxicidad , Bacterias/efectos de los fármacos , Bacterias/genética , Bacterias/efectos de la radiación , Desinfección/métodos , Biodegradación Ambiental
5.
Cancer Lett ; 588: 216739, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38395379

RESUMEN

Prostate cancer (PCa) is a prevalent malignancy among men worldwide, and biochemical recurrence (BCR) after radical prostatectomy (RP) is a critical turning point commonly used to guide the development of treatment strategies for primary PCa. However, the clinical parameters currently in use are inadequate for precise risk stratification and informing treatment choice. To address this issue, we conducted a study that collected transcriptomic data and clinical information from 1662 primary PCa patients across 12 multicenter cohorts globally. We leveraged 101 algorithm combinations that consisted of 10 machine learning methods to develop and validate a 9-gene signature, named BCR SCR, for predicting the risk of BCR after RP. Our results demonstrated that BCR SCR generally outperformed 102 published prognostic signatures. We further established the clinical significance of these nine genes in PCa progression at the protein level through immunohistochemistry on Tissue Microarray (TMA). Moreover, our data showed that patients with higher BCR SCR tended to have higher rates of BCR and distant metastasis after radical radiotherapy. Through drug target prediction analysis, we identified nine potential therapeutic agents for patients with high BCR SCR. In conclusion, the newly developed BCR SCR has significant translational potential in accurately stratifying the risk of patients who undergo RP, monitoring treatment courses, and developing new therapies for the disease.


Asunto(s)
Antígeno Prostático Específico , Neoplasias de la Próstata , Masculino , Humanos , Benchmarking , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/metabolismo , Próstata/patología
6.
Redox Biol ; 67: 102929, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37856999

RESUMEN

Contrast-induced acute kidney injury(CI-AKI) is the third cause of AKI. Although tubular injury has been regarded as an important pathophysiology of CI-AKI, the underlying mechanism remains elusive. Here, we found arginase2(ARG2) accumulated in the tubules of CI-AKI mice, and was upregulated in iohexol treated kidney tubular cells and in blood samples of CI-AKI mice and patients, accompanied by increased nitrosative stress and apoptosis. However, all of the above were reversed in ARG2 knockout mice, as evidenced by the ameliorated kidney dysfunction and the tubular injury, and decreased nitrosative stress and apoptosis. Mechanistically, HO-1 upregulation could alleviate iohexol or ARG2 overexpression mediated nitrosative stress. Silencing and overexpressing ARG2 was able to upregulate and downregulate HO-1 expression, respectively, while HO-1 siRNA had no effect on ARG2 expression, indicating that ARG2 might inhibit HO-1 expression at the transcriptional level, which facilitated nitrosative stress during CI-AKI. Additionally, CREB1, a transcription factor, bound to the promoter region of ARG2 and stimulated its transcription. Similar findings were yielded in cisplatin- or vancomycin-induced AKI models. Taken together, ARG2 is a crucial target of CI-AKI, and activating CREB1/ARG2/HO-1 axis can mediate tubular injury by promoting nitrosative stress, highlighting potential therapeutic strategy for treating CI-AKI.


Asunto(s)
Lesión Renal Aguda , Yohexol , Humanos , Ratones , Animales , Yohexol/efectos adversos , Yohexol/metabolismo , Estrés Nitrosativo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/tratamiento farmacológico , Riñón/metabolismo , Factores de Transcripción/metabolismo , Cisplatino/farmacología , Apoptosis , Ratones Endogámicos C57BL
7.
Hum Genet ; 2023 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-37758909

RESUMEN

Nonmutational epigenetic reprogramming is a crucial mechanism contributing to the pronounced heterogeneity of prostate cancer (PCa). Among these mechanisms, N6-methyladenosine (m6A)-modified long non-coding RNAs (lncRNAs) have emerged as key players. However, the precise roles of m6A-modified lncRNAs in PCa remain to be elucidated. In this study, methylated RNA immunoprecipitation sequencing (MeRIP-seq) was conducted on primary and metastatic PCa samples, leading to the identification of 21 lncRNAs exhibiting differential methylation and expression patterns. We further established a PCa prognostic signature, named m6A-modified lncRNA score (mLs), based on 9 differential methylated lncRNAs in 4 multicenter cohorts. The high mLs score cohort exhibited a tendency for earlier biochemical recurrence (BCR) compared to the low mLs score cohort. Remarkably, the predictive performance of the mLs score surpassed that of five previously reported lncRNA-based signatures. Functional enrichment analysis underscored a negative correlation between the mLs score and lipid metabolism. Additionally, through MeRIP-qPCR, we pinpointed a hub gene, MIR210HG, which was validated through in vitro and in vivo experiments. These findings collectively illuminate the landscape of m6A-methylated lncRNAs in PCa tissue via MeRIP-seq and harness this information to prognosticate PCa outcomes using the mLs score. Furthermore, our study validates, both experimentally and mechanistically, the facilitative role of MIR210HG in driving PCa progression.

8.
J Environ Manage ; 347: 119073, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37776795

RESUMEN

The efficiency of microbial populations in degrading refractory pollutants and the impact of adverse environmental factors often presents challenges for the biological treatment of azo dyes. In this study, the genome analysis and azo dye Reactive Black 5 (RB5) degrading capability of a newly isolated strain, Shewanella sp. SR1, were investigated. By analyzing the genome, functional genes involved in dye degradation and mechanisms for adaptation to low-temperature and high-salinity conditions were identified in SR1. The addition of co-substrates, such as glucose and yeast extract, significantly enhanced RB5 decolorization efficiency, reaching up to 87.6%. Notably, SR1 demonstrated remarkable robustness towards a wide range of NaCl concentrations (1-30 g/L) and temperatures (10-30 °C), maintaining efficient decolorization and high biomass concentration. The metabolic pathways of RB5 degradation were deduced based on the metabolites and genes detected in the genome, in which the azo bond was first cleaved by FMN-dependent NADH-azoreductase and NAD(P)H-flavin reductase, followed by deamination, desulfonation, and hydroxylation mediated by various oxidoreductases. Importantly, the degradation metabolites exhibited reduced toxicity, as revealed by toxicity analysis. These findings highlighted the great potential of Shewanella sp. SR1 for bioremediation of wastewaters contaminated with azo dyes.


Asunto(s)
Compuestos Azo , Shewanella , Biodegradación Ambiental , Compuestos Azo/química , Shewanella/genética , Shewanella/metabolismo , Anaerobiosis , Colorantes/química
9.
J Environ Manage ; 344: 118691, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37536239

RESUMEN

Incineration is a promising disposal method for sewage sludge (SS), enriching more than 90% of phosphorus (P) in the influent into the powdered product, sewage sludge ash (SSA), which is convenient for further P recovery. Due to insufficient bioavailable P and enriched heavy metals (HMs) in SSA, it is limited to be used directly as fertilizer. Hence, this paper provides an overview of P transformation in SS incineration, characterization of SSA components, and wet-chemical and thermochemical processes for P recovery with a comprehensive technical, economic, and environmental assessment. P extraction and purification is an important technical step to achieve P recovery from SSA, where the key to all technologies is how to achieve efficient separation of P and HMs at a low economic and environmental cost. It can be clear seen from the review that the economics of P recovery from SSA are often weak due to many factors. For example, the cost of wet-chemical methods is approximately 5∼6 €/kg P, while the cost of recovering P by thermochemical methods is about 2∼3 €/kg P, which is slightly higher than the current P fertilizer (1 €/kg P). So, for now, legislation is significant for promoting P recovery from SSA. In this regard, the relevant experience in Europe is worth learning from countries that have not yet carried out P recovery from SSA, and to develop appropriate policies and legislation according to their own national conditions.


Asunto(s)
Metales Pesados , Fósforo , Fósforo/análisis , Aguas del Alcantarillado/química , Fertilizantes , Incineración , Europa (Continente) , Metales Pesados/química
10.
Water Res ; 242: 120260, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37392507

RESUMEN

The occurrence of a viable but nonculturable (VBNC) state in antibiotic-resistant E. coli (AR E. coli) and inefficient degradation of their antibiotic resistance genes (ARGs) may cause potential health risks during disinfection. Peracetic acid (PAA) is an alternative disinfectant for replacing chlorine-based oxidants in wastewater treatment, and the potential of PAA to induce a VBNC state in AR E. coli and to remove the transformation functionality of ARGs were investigated for the first time. Results show that PAA exhibits excellent performance in inactivating AR E. coli (over 7.0-logs) and persistently inhibiting its regeneration. After PAA disinfection, insignificant changes in the ratio of living to dead cells (∼4%) and the level of cell metabolism, indicating that AR E. coli were induced into VBNC states. Unexpectedly, PAA was found to induce AR E. coli into VBNC state by destroying the proteins containing reactive amino acids at thiol, thioether and imidazole groups, rather than the result of membrane damage, oxidative stress, lipid destruction and DNA disruption in the conventional disinfection processes. Moreover, the result of poor reactivity between PAA and plasmid strands and bases confirmed that PAA hardly reduced the abundance of ARGs and damaged the plasmid's integrity. Transformation assays and real environment validation indicated that PAA-treated AR E. coli could release large abundance of naked ARGs with high-efficiency transformation functionality (∼5.4 × 10-4 - ∼8.3 × 10-6) into the environment. This study has significant environmental implications for assessing the transmission of antimicrobial resistance during PAA disinfection.


Asunto(s)
Desinfectantes , Desinfección , Desinfección/métodos , Ácido Peracético/farmacología , Escherichia coli/genética , Antibacterianos/farmacología , Desinfectantes/farmacología , Farmacorresistencia Microbiana
11.
Front Endocrinol (Lausanne) ; 14: 1193884, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324264

RESUMEN

Background: Overweight and obesity are well-known risk factors for developing type 2 diabetes (T2DM). However, details on the evolution of the T2DM burden attributed to China's high body mass index (BMI) in China have not been thoroughly studied. This study aimed to investigate the temporal trends of the T2DM burden attributable to a high BMI in China from 1990 to 2019 and to evaluate the independent effects of age, period, and cohort on the burden of T2DM attributed to a high BMI. Methods: Data on T2DM burden attributable to a high BMI from 1990 to 2019 were obtained from the Global Burden of Disease Study 2019. Deaths, disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALY rate (ASDR) of T2DM attributable to a high BMI were estimated by age and sex. The joinpoint regression model was performed to calculate the annual percentage change (APC) and the average annual percentage change (AAPC) in the burden of T2DM attributed to a high BMI. The age-period-cohort analysis was applied to estimate the independent effects of age, period, and cohort on the temporal trends of mortality and the DALY rate. Results: In 2019, deaths and DALYs from T2DM attributable to a high BMI in China were 47.53 thousand and 3.74 million, respectively, five times higher than in 1990. Among those under 60 years of age, men had higher deaths and DALYs than women, while the gender differences reversed in those over 60 years of age. Furthermore, the ASMR and ASDR in 2019 were 2.39 per 100,000 (95%UI 1.12-3.90) and 181.54 per 100,000 (95%UI 93.71-286.33), respectively, representing a 91% and 126% increase since 1990. In China, women previously had a higher ASMR and ASDR than men, while the differences in the ASMR and ASDR between the sexes were reversed in recent years. From 1990 to 2019, the ASMR in women increased before 2004 and then decreased from 2004 to 2015, and increased again after, with an overall AAPC value of 1.6%. In contrast, the ASMR in men continued to increase, with an overall AAPC value of 3.2%. The ASDR continued to increase in men and women, with AAPCs of 2.2% and 3.5%, respectively. The age effect showed that the relative risk of mortality increased with age in both men and women, except for the 75-84 age group. The impact of the age on the DALY rate revealed a trend of first rising and then decreasing, peaking at 65-69 years. The effect of the period on the burden of T2DM attributable to a high BMI increased from 1990 to 2019. The cohort effect generally showed a downward trend. Conclusion: The burden of T2DM attributed to a high BMI in China increased substantially from 1990 to 2019, particularly in men. Therefore, there is an urgent need for gender- and age-based public health guidelines on prevention strategies, early diagnosis, and effective management of T2DM, overweight, and obesity in China.


Asunto(s)
Diabetes Mellitus Tipo 2 , Masculino , Humanos , Femenino , Persona de Mediana Edad , Anciano , Índice de Masa Corporal , Diabetes Mellitus Tipo 2/epidemiología , Diabetes Mellitus Tipo 2/etiología , Sobrepeso/epidemiología , Años de Vida Ajustados por Calidad de Vida , China/epidemiología , Obesidad/epidemiología
12.
Environ Sci Technol ; 57(47): 18940-18949, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37207368

RESUMEN

Peracetic acid (PAA) is an emerging alternative disinfectant for saline waters; HOBr or HOCl is known as the sole species contributing to halogenation reactions during PAA oxidation and disinfection. However, new results herein strongly indicated that the brominating agents (e.g., BrCl, Br2, BrOCl, and Br2O) are generated at concentrations typically lower than HOCl and HOBr but played significant roles in micropollutants transformation. The presence of Cl- and Br- at environmentally relevant levels could greatly accelerate the micropollutants (e.g., 17α-ethinylestraiol (EE2)) transformation by PAA. The kinetic model and quantum chemical calculations collectively indicated that the reactivities of bromine species toward EE2 follow the order of BrCl > Br2 > BrOCl > Br2O > HOBr. In saline waters with elevated Cl- and Br- levels, these overlooked brominating agents influence bromination rates of more nucleophilic constituents of natural organic matter and increase the total organic bromine. Overall, this work refines our knowledge regarding the species-specific reactivity of brominating agents and highlights the critical roles of these agents in micropollutant abatement and disinfection byproduct formation during PAA oxidation and disinfection.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromo , Ácido Peracético , Aguas Residuales , Bromatos , Desinfección/métodos , Purificación del Agua/métodos
13.
Ecotoxicol Environ Saf ; 259: 115025, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37216861

RESUMEN

In this paper, water and sediments were sampled at eight monitoring stations in the coastal areas of the Yangtze River Estuary in summer and autumn 2021. Two sulfonamide resistance genes (sul1 and sul2), six tetracycline resistance genes (tetM, tetC, tetX, tetA, tetO, and tetQ), one integrase gene (intI1), 16 S rRNA genes, and microbial communities were examined and analyzed. Most resistance genes showed relatively higher abundance in summer and lower abundance in autumn. One-way analysis of variance (ANOVA) showed significant seasonal variation of some ARGs (7 ARGs in water and 6 ARGs in sediment). River runoff and WWTPs are proven to be the major sources of resistance genes along the Yangtze River Estuary. Significant and positive correlations between intI1 and other ARGs were found in water samples (P < 0.05), implying that intI1 may influence the spread and propagation of resistance genes in aquatic environments. Proteobacteria was the dominant phylum along the Yangtze River Estuary, with an average proportion of 41.7%. Redundancy analysis indicated that the ARGs were greatly affected by temperature, dissolved oxygen, and pH in estuarine environments. Network analysis showed that Proteobacteria and Cyanobacteria were the potential host phyla for ARGs in the coastal areas of the Yangtze River Estuary.


Asunto(s)
Estuarios , Microbiota , Resistencia a la Tetraciclina/genética , Ríos/microbiología , Genes Bacterianos , Farmacorresistencia Microbiana/genética , Antibacterianos/análisis , Tetraciclina/análisis , Sulfanilamida , Sulfonamidas/análisis , Agua/análisis , Microbiota/genética , China , Monitoreo del Ambiente
14.
Front Immunol ; 14: 1126348, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37063876

RESUMEN

Background: Drug-induced acute kidney damage (DI-AKI) is a clinical phenomenon of rapid loss of kidney function over a brief period of time as a consequence of the using of medicines. The lack of a specialized treatment and the instability of traditional kidney injury markers to detect DI-AKI frequently result in the development of chronic kidney disease. Thus, it is crucial to continue screening for DI-AKI hub genes and specific biomarkers. Methods: Differentially expressed genes (DEGs) of group iohexol, cisplatin, and vancomycin's were analyzed using Limma package, and the intersection was calculated. DEGs were then put into String database to create a network of protein-protein interactions (PPI). Ten algorithms are used in the Cytohubba plugin to find the common hub genes. Three DI-AKI models' hub gene expression was verified in vivo and in vitro using PCR and western blot. To investigate the hub gene's potential as a biomarker, protein levels of mouse serum and urine were measured by ELISA kits. The UUO, IRI and aristolochic acid I-induced nephrotoxicity (AAN) datasets in the GEO database were utilized for external data verification by WGCNA and Limma package. Finally, the Elisa kit was used to identify DI-AKI patient samples. Results: 95 up-regulated common DEGs and 32 down-regulated common DEGs were obtained using Limma package. A PPI network with 84 nodes and 24 edges was built with confidence >0.4. Four hub genes were obtained by Algorithms of Cytohubba plugin, including TLR4, AOC3, IRF4 and TNFAIP6. Then, we discovered that the protein and mRNA levels of four hub genes were significantly changed in the DI-AKI model in vivo and in vitro. External data validation revealed that only the AAN model, which also belonged to DI-AKI model, had significant difference in these hub genes, whereas IRI and UUO did not. Finally, we found that plasma TLR4 levels were higher in patients with DI-AKI, especially in vancomycin-induced AKI. Conclusion: The immune system and inflammation are key factors in DI-AKI. We discovered the immunological and inflammatory-related genes TLR4, AOC3, IRF4, and TNFAIP6, which may be promising specific biomarkers and essential hub genes for the prevention and identification of DI-AKI.


Asunto(s)
Lesión Renal Aguda , Receptor Toll-Like 4 , Animales , Ratones , Receptor Toll-Like 4/genética , Transcriptoma , Vancomicina/efectos adversos , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética
15.
Sci Total Environ ; 874: 162474, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36863584

RESUMEN

3-Monochloro-1,2-propanediol (3-MCPD) is a pervasive environmental pollutant that is unintentionally produced during industrial production and food processing. Although some studies reported the carcinogenicity and male reproduction toxicity of 3-MCPD thus far, it remains unexplored whether 3-MCPD hazards to female fertility and long-term development. In this study, the model Drosophila melanogaster was employed to evaluate risk assessment of emerging environmental contaminants 3-MCPD at various levels. We found that flies on dietary exposure to 3-MCPD incurred lethality in a concentration- and time-dependent way and interfered with metamorphosis and ovarian development, resulting in developmental retardance, ovarian deformity and female fecundity disorders. Mechanistically, 3-MCPD caused redox imbalance observed as a drastically increased oxidative status in ovaries, confirmed by increased reactive oxygen species (ROS) and decreased antioxidant activities, which is probably responsible for female reproductive impairments and developmental retardance. Intriguingly, these defects can be substantially prevented by a natural antioxidant, cyanidin-3-O-glucoside (C3G), further confirming a critical role of ovarian oxidative damage in the developmental and reproductive toxicity of 3-MCPD. The present study expanded the findings that 3-MCPD acts as a developmental and female reproductive toxicant, and our work provides a theoretical basis for the exploitation of a natural antioxidant resource as a dietary antidote for the reproductive and developmental hazards of environmental toxicants that act via increasing ROS in the target organ.


Asunto(s)
alfa-Clorhidrina , Animales , Masculino , Femenino , alfa-Clorhidrina/toxicidad , Drosophila melanogaster , Antioxidantes , Propilenglicol , Especies Reactivas de Oxígeno , Ovario , Glucósidos
16.
Front Nutr ; 10: 1078371, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36937353

RESUMEN

Background: High sodium intake is a crucial risk factor for the development and progression of chronic kidney disease (CKD). However, the latest global spatiotemporal patterns of CKD burden attributable to high sodium intake still remain unclear. We aimed to evaluate the level and trends of the CKD burden associated with high sodium intake according to sex, age, socio-demographic index (SDI), region, and country from 1990 to 2019. Methods: Data on CKD burden attributable to high sodium intake from 1990 to 2019 were extracted from the Global Burden of Disease (GBD) Study 2019. The CKD-related deaths, disability-adjusted life years (DALYs), age-standardized mortality rate (ASMR), and age-standardized DALYs rate (ASDR) attributable to high sodium intake were estimated by age, sex, SDI, region, and country. The estimated annual percentage change (EAPC) was calculated to evaluate the secular trends of ASMR and ASDR of CKD attributable to high sodium intake from 1990 to 2019. We further explored the associations of SDI with the ASMR and ASDR of CKD attributable to high sodium intake. Results: Globally, the number of CKD-related deaths and DALYs attributable to high sodium intake were 45,530 (95% UI: 12,640 to 93,830) and 1.32 million (95% UI: 0.43 to 2.8) in 2019, both twice as many as those in 1990. However, the ASMR and ASDR slightly grew, with an EAPC of 0.22 (95% CI: 0.16 to 0.28) and 0.10 (95% CI: 0.04 to 0.16), respectively. The age-specific numbers and rates of deaths, as well as DALYs of CKD attributable to high sodium intake, rose with age and were greater in males than in females. The rates of deaths and DALYs peaked in the >95 age group for both females and males in 2019. From 1990 to 2019, the trends of both age-specific rates of mortality and DALYs of CKD attributable to high sodium intake were down in people under 60, while in people over 60, the trends were the opposite. The burden of CKD attributable to high sodium intake in 2019 and its temporal trends from 1990 to 2019 varied greatly by SDI quintile and geographic location. The ASMR or ASDR showed a non-linear negative correlation with SDI at the regional level. The EAPC in ASMR or ASDR showed a markedly negative correlation with ASMR or ASDR in 1990, with a coefficient of -0.40. Nevertheless, the EAPC in ASMR rather than ASDR was positively correlated with SDI in 2019, with a coefficient of 0.18. Conclusion: Our findings suggest that there are significant sexual and geographic variations in the burden of CKD attributable to high sodium intake and its temporal trends. Globally, the high sodium intake-caused CKD burden continues to elevate, posing a major challenge to public health. In response to this, strengthened and tailored approaches for CKD prevention and sodium intake management are needed, especially for elderly populations, males, and the population in the middle SDI regions.

17.
RSC Adv ; 13(7): 4530-4531, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36760286

RESUMEN

[This corrects the article DOI: 10.1039/D1RA05816A.].

18.
Water Res ; 229: 119462, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36516559

RESUMEN

Activation of peracetic acid (PAA) to generate powerful oxidizing species has become a promising advanced oxidation processes (AOPs) in wastewater treatment, yet the development of low-cost and high-performance activators is still a primary challenge. Herein, a range of Co-Mn spinel oxides (Co3-xMnxO4) with varying levels of Co and Mn were successfully elaborated, in which Co1.1Mn1.9O4 exhibited remarkable performance in PAA activation, outperforming most reported heterogeneous catalysts. Extensive quenching experiments and electron spin resonance (ESR) analysis indicated that acetylperoxyl radical (CH3C(O)OO●) was the predominated oxidizing species responsible for sulfamethoxazole (SMX) degradation. Density functional theory (DFT) calculations revealed that doping with Mn not only promoted the electron transfer and accelerated reduction of Co(III) to Co(II), but also lowered the energy barrier for PAA activation. Moreover, the prominent chemisorption and activation of PAA with Co1.1Mn1.9O4 was also benefitted from the significant role of Mn in optimizing the distribution of bonding and antibonding states on Co 3d orbitals. Unexpectedly, high levels of Cl-greatly facilitated SMX degradation due to the mass production of HOCl from the chain reactions of various radicals with Cl-. This work provides new insights into bimetallic activation of PAA, and the knowledge obtained will further advance the application of PAA-based AOPs.


Asunto(s)
Óxidos , Contaminantes Químicos del Agua , Ácido Peracético , Antibacterianos , Oxidación-Reducción , Sulfanilamida , Sulfametoxazol , Peróxido de Hidrógeno
19.
J Hazard Mater ; 445: 130536, 2023 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469990

RESUMEN

Thiosulfate (S2O32-) has been proven to be an effective promoter of Fenton-like reactions by accelerating the metal ions cycle. However, up to now, little is known about the role of sulfur transformation and intermediate sulfur in the regulation of metal chemical cycle and reactive species production. Herein, free Cu(II) was selected as catalyst for the activation of H2O2. The introduction of S2O32- significantly enhanced the degradation of benzoic acid, and the degradation rate (kobs) was 5.8 times that of Cu(II)/H2O2 system. The kinetic model revealed the transformation of sulfur species and demonstrated that sulfides (i.e., HS-/S2-, S2O32-) and S0 were the dominant electron donor for the reduction of Cu(II) into Cu(I). Consequently, the reduction and complexation roles of S2O32- significantly resolve the rate-limiting step and broaden the pH range of in Fenton-like reactions. Evidence for the critical role of high-valent copper (Cu(III)) and HO• on BA degradation was obtained by scavengers experiments, electron paramagnetic resonance and fluorescent probes. Meanwhile, the Cu(II)/H2O2/S2O32- system also exhibited satisfactory anti-interference ability of the various matrix. Overall, this study offers mechanistic insight into sulfidation in Cu chemical cycle and Cu(III) generation, and highlights the potential of S2O32- for Fenton-like reactions to control pollutants.


Asunto(s)
Cobre , Peróxido de Hidrógeno , Oxidación-Reducción , Tiosulfatos , Catálisis , Azufre
20.
Cell Cycle ; 22(1): 38-56, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35946607

RESUMEN

The cGAS/STING signaling pathway is an important part of the cytoplasmic DNA sensor, which can trigger a type I interferon response to microbial infection when pathogenic DNA is detected. However, continuous inhibition of cGAS/STING signaling by viral infection may be an important cause of tumorigenesis. At the same time, recent studies have shown that although the cGAS/STING signaling pathway also plays a core role in anti-tumor immunity and cell senescence, the inflammatory response induced by cGAS/STING signaling will also promote tumorigenesis in different backgrounds. Here, we discuss the role of cGAS/STING in the context of infection, senescence, and tumors, especially with respect to progression, to facilitate a better understanding of the mechanism of the cGAS/STING pathway.


Asunto(s)
Interferón Tipo I , Transducción de Señal , Humanos , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , ADN , Carcinogénesis , Inmunidad Innata
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA