RESUMEN
Pneumonia caused by Mesomycoplasma hyopneumoniae (Mhp) is a respiratory disease with high morbidity and low mortality that typically presents in growing pigs. Although often subclinical, the disease can significantly affect the pig farming industry economically due to decreased growth rates and inefficient feed conversion. Effective control of Mhp depends on the detection of dominant strains prevalent in infected animals, which vary in virulence. However, traditional culture methods for diagnosing Mhp are laborious and slow, whereas multi-locus sequence typing, another possible method, requires identifying several genes. This study introduces a novel pair of polymerase chain reaction (PCR) primers for the rapid detection and genetic evolution analysis of Mhp strains to facilitate improved vaccine selection. The genetic evolutionary tree established using the PCR amplification fragment was highly similar to the genetic evolutionary tree established using whole-genome sequences. Analysis of 131 samples from Guangxi and Hunan slaughterhouses revealed a 30.53â¯% prevalence of Mhp. High-throughput sequencing has shown that Mhp has a diverse bacterial population in clinically collected samples. The prevalence of major strains may vary among regions. Additionally, the strains of Mhp vaccines sold may differ significantly from the strains prevalent on farms. In summary, this work has designed a pair of primers that will be useful for detecting the diversity of Mhp and for targeted prevention and control.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Animales , Porcinos , Reacción en Cadena de la Polimerasa/veterinaria , Variación Genética , Enfermedades de los Porcinos/microbiología , China , Neumonía Porcina por Mycoplasma/microbiología , Pasteurellaceae/genética , Pasteurellaceae/clasificación , Pasteurellaceae/aislamiento & purificación , MataderosRESUMEN
With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE: (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.
Asunto(s)
Equol , Isoflavonas , Animales , Humanos , Ratones , Ratas , Porcinos , Equol/genética , Equol/metabolismo , Racemasas y Epimerasas , Pollos/metabolismo , Isoflavonas/metabolismo , Oxidorreductasas/metabolismoRESUMEN
The gut microbiota consists of a vast and diverse assemblage of microorganisms that play a pivotal role in maintaining host health. Nevertheless, a significant portion of the human gut microbiota remains uncultivated. Plasmids, a type of MGE, assume a critical function in the biological evolution and adaptation of bacteria to varying environments. To investigate the plasmids present within the gut microbiota community, we used the transposon-aided capture method (TRACA) to explore plasmids derived from the gut microbiota. In this study, fecal samples were collected from two healthy human volunteers and subsequently subjected to the TRACA method for plasmid isolation. Then, the complete sequence of the plasmids was obtained using the genome walking method, and sequence identity was also analyzed. A total of 15 plasmids were isolated. At last, 13 plasmids were successfully sequenced, of which 12 plasmids were highly identical to the plasmids in the National Center for Biotechnology Information (NCBI) database and were all small plasmids. Furthermore, a putative novel plasmid, named pMRPHD, was isolated, which had mobilized elements (oriT and oriV) and a potential type II restriction-modification (R-M) system encoded by DNA cytosine methyltransferase and type II restriction enzyme (Ban I), whose specific functions and applications warrant further exploration.
Asunto(s)
Bacterias , Humanos , Plásmidos/genética , Bacterias/genéticaRESUMEN
This work was performed on commercially purchased Salmonella pullorum CVCC519 originally isolated from chicken intestinal content. The Sanguinarine-resistant strain XM3104 was isolated from Sanguinarine-induced CVCC519. To identify possible mechanisms underlying resistance, the complete genomes of CVCC519 and XM3104 were sequenced using PromethION and next-generation sequencing.
RESUMEN
Lactobacillus amylovorus has been reported to reduce weight and fat content in humans. To identify and understand the mechanism underlying this process, the complete genome of CICC 6090, which was isolated from pig intestines, was sequenced using PromethION and next-generation sequencing.
RESUMEN
The human digestive tract is colonized by trillions of bacterial cells that play important roles in human health and diseases. It is well known that dietary habits are associated with human microbiota enterotypes. However, the factors that determine the enterotype still remain elusive. In this study, it was first examined, via in vitro batch fermentation, how different carbohydrates affect the Bacteroides and Prevotella enterotypes. Among the 11 substrates (fructo-, galacto-, xylo-, manno-, and isomalto-oligosaccharides [IMO] and lactulose, raffinose, starch, inulin [INU], mannitol, and xylitol) tested, IMO, INU, and starch were found to sustain the growth of Prevotella through batch fermentation. The development of the Prevotella and Bacteroides enterotypes was further simulated in chemostats using fecal samples. IMO coupled with faster dilution rates and lower pH were required to sustain the growth of Prevotella copri in the chemostat based on 16S rRNA gene and metagenomic sequencing. Meanwhile, starch with relatively lower dilution rates and higher pH was required to support the development of the Bacteroides enterotype. Amylo-α-1,6-glucosidase, pectin, and xylan lyases were the carbohydrate-active enzymes associated with the Prevotella enterotype. The Bacteroides enterotype was associated with more diversified carbohydrate-active enzymes. Consistently, since honey contains high isomaltose content, mice fed IMO and honey displayed an increased relative abundance of Prevotella in the colon. In conclusion, both in vitro systems and a mouse model were used to demonstrate that IMO maintains the Prevotella enterotype. This result provides insight into the nutritional requirements underlying gut enterotype formation. IMPORTANCE The Prevotella enterotype type is a human traditional enterotype with high dietary fiber intake, which is related to healthy ageing and Parkinson's disease development. Manipulations of the dwelled gut microbes by dietary isomalto-oligosaccharides efficiently sustained Prevotella type enterotypes, indicating that it can be used in the improvement of elderly health by increasing the gut transit time.
Asunto(s)
Microbioma Gastrointestinal , Humanos , Animales , Ratones , Anciano , ARN Ribosómico 16S/genética , Heces/microbiología , Prevotella/genética , Carbohidratos , Modelos Animales , AlmidónRESUMEN
Genome sequences of 4 644 representative strains from human gut microbiota were analyzed to mine gene clusters for biosynthesis of novel secondary metabolites, as well as genes encoding antibiotic resistance and virulence factors. AntiSMASH analysis showed that more than 60% of the representative strains encoded at least one secondary metabolite gene cluster, and 8 potential novel secondary metabolite gene clusters were identified from 8 unculturable bacteria. The secondary metabolite gene clusters in human intestine are mainly composed of nonribosomal peptide synthetase (NRPS), bacteriocin, arylpolyene, terpene, betalactone and NRPS like gene clusters distributed in Clostridia, Bacilli, Gammaproteobacteria, Bacteroidia, Actinobacteria and Negativicutes. PathoFact analysis showed that genes encoding antibiotic resistance and virulence factors are widely distributed in representative strains, but the frequency encoded by potential pathogens is significantly higher than that of non-potential pathogens. The frequency of genes encoding secretory toxins such as outer membrane protein, PapC N-terminal domain, PapC C-terminal domain, peptidase M16 inactive domain, and non-secretory toxins such as nitroreductase family, AcrB/AcrD/AcrF family, PLD-like domain, Cupin domain, putative hemolysin, S24-like peptidase, phosphotransferase enzyme family, endonuclease/ exonuclease/ phosphatase family, glyoxalase/ bleomycin resistance was high in potential pathogens. This study may facilitate mining new microbial natural products from the intestinal microbiome, understanding the colonization and infection mechanism of intestinal microorganisms, and providing targeted prevention and treatment of intestinal microbial related diseases.
Asunto(s)
Bacterias , Familia de Multigenes , Humanos , Virulencia , Farmacorresistencia Microbiana , Factores de Virulencia , Péptido HidrolasasRESUMEN
Esophageal microbiota plays important roles in esophageal squamous cell carcinoma (ESCC). The aims of this study were to clarify the changes in the bacterial community during ESCC development and identify latent pathogenic bacteria which may contribute to esophageal carcinogenesis and progression. Fresh tumor and nontumor esophageal mucosal samples were collected from 31 men with ESCC. High-throughput 16s rRNA sequencing was performed, and the operational taxonomic unit data and bacterial classification annotation were obtained and analyzed. The Ace, Chao, Shannon, Simpson indexes, and operational taxonomic unit numbers were higher in nontumor tissues than in tumor tissues, although without statistical significance. There were 4 phyla and 28 genera found to show significant differences between tumor and nontumor samples. The general probiotic Lactobacillus was 1.98-fold higher in nontumor tissues, while the general pathogenic genera Fusobacterium was 4.35-fold higher in tumor tissues. For tumor tissue samples, the genera Treponema and Brevibacillus were significantly higher in N1 and N2 stages, respectively, and Acinetobacter was significantly higher in T3 stage. For nontumor tissues, the genus Fusicatenibacter was significantly higher in T2 stage, and Corynebacterium, Aggregatibacter, Saccharimonadaceae-TM7x, and Cupriavidus were significantly higher in T4 stage. Additionally, bacteria related to nitrotoluene degradation were enriched in nontumor tissues, while bacteria related to base excision repair were enriched in tumor tissues. The relative abundance of several phyla and genera are different between tumor and nontumor tissue samples. The altered bacterial microbiota is correlated with different tumor stages and some microbes may take part in the carcinogenesis and development of ESCC.
Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Microbiota , Bacterias/genética , Carcinogénesis , Carcinoma de Células Escamosas/patología , Mucosa Esofágica/patología , Neoplasias Esofágicas/patología , Humanos , Masculino , ARN Ribosómico 16SRESUMEN
(S)-equol (EQ) is an isoflavone with high estrogen-like activity in the human body, and is only produced by some gut bacteria in vivo. It plays an important role in maintaining individual health, however, the dearth of resources associated with (S)-EQ-producing bacteria has seriously restricted the production and application of (S)-EQ. We report here a new functional gene KEC48-07020 (K-07020) that was identified from a chick (S)-EQ-producing bacterium (Clostridium sp. ZJ6, ZJ6). We found that recombinant protein of K-07020 possessed similar function to daidzein reductase (DZNR), which can convert daidzein (DZN) into R/S-dihydrodaidzein (R/S-DHD). Interestingly, K-07020 can reversely convert (R/S)-DHD (DHD oxidase) into DZN even without cofactors under aerobic conditions. Additionally, high concentrations of (S)-EQ can directly promote DHD oxidase but inhibit DZNR activity. Molecular docking and site-directed mutagenesis revealed that the amino acid > Arg75 was the active site of DHD oxidase. Subsequently, an engineered E. coli strain based on K-07020 was constructed and showed higher yield of (S)-EQ than the engineered bacteria from our previous work. Metagenomics analysis and PCR detection surprisingly revealed that K-07020 and related bacteria may be prevalent in the gut of humans and animals. Overall, a new DZNR from ZJ6 was found and identified in this study, and its bidirectional enzyme activities and wide distribution in the gut of humans and animals provide alternative strategies for revealing the individual regulatory mechanisms of (S)-EQ-producing bacteria.
RESUMEN
Antibiotic resistance is a serious medical issue driven by antibiotic misuse. Bifidobacteria may serve as a reservoir for antibiotic resistance genes (ARGs) that have the potential risk of transfer to pathogens. The erythromycin resistance gene erm(X) is an ARG with high abundance in bifidobacteria, especially in Bifidobacterium longum species. However, the characteristics of the spread and integration of the gene erm(X) into the bifidobacteria genome are poorly understood. In this study, 10 tetW-positive bifidobacterial strains and 1 erm(X)-positive bifidobacterial strain were used to investigate the transfer of ARGs. Conjugation assays found that the erm(X) gene could transfer to five other bifidobacterial strains. Dimethyl sulfoxide (DMSO) and vorinostat significantly promoted the transfer of the erm(X) from strain Bifidobacterium catenulatum subsp. kashiwanohense DSM 21854 to Bifidobacterium longum subsp. suis DSM 20211. Whole-genome sequencing and comparative genomic analysis revealed that the erm(X) gene was located on the genomic island BKGI1 and that BKGI1 was conjugally mobile and transferable. To our knowledge, this is the first report that a genomic island-mediated gene erm(X) transfer in bifidobacteria. Additionally, BKGI1 is very unstable in B. catenulatum subsp. kashiwanohense DSM 21854 and transconjugant D2TC and is highly excisable and has an intermediate circular formation. In silico analysis showed that the BKGI1 homologs were also present in other bifidobacterial strains and were especially abundant in B. longum strains. Thus, our results confirmed that genomic island BKGI1 was one of the vehicles for erm(X) spread. These findings suggest that genomic islands play an important role in the dissemination of the gene erm(X) among Bifidobacterium species. IMPORTANCE Bifidobacteria are a very important group of gut microbiota, and the presence of these bacteria has many beneficial effects for the host. Thus, bifidobacteria have attracted growing interest owing to their potential probiotic properties. Bifidobacteria have been widely exploited by the food industry as probiotic microorganisms, and some species have a long history of safe use in food and feed production. However, the presence of antibiotic resistance raises the risk of its application. In this study, we analyzed the transfer of the erythromycin resistance gene erm(X) and revealed that the molecular mechanism behind the spread of the gene erm(X) was mediated by genomic island BKGI1. To the best of our knowledge this is the first report to describe the transfer of the gene erm(X) via genomic islands among bifidobacteria. This may be an important way to disseminate the gene erm(X) among bifidobacteria.
Asunto(s)
Eritromicina , Islas Genómicas , Antibacterianos/farmacología , Bifidobacterium/genética , Eritromicina/farmacologíaRESUMEN
The research on the relationship between gut microbiota and human health continues to be a hot topic in the field of life science. Culture independent 16S rRNA gene high-throughput sequencing is the current main research method. However, with the reduction of sequencing cost and the maturity of data analysis methods, shotgun metagenome sequencing is gradually becoming an important method for the study of gut microbiome due to its advantages of obtaining more information. With the support from the human microbiome project, 30 805 metagenome samples were sequenced in the United States. By searching NCBI PubMed and SRA databases, it was found that 72 studies collecting about 10 000 Chinese intestinal samples were used for metagenome sequencing. To date, only 56 studies were published, including 16 related to metabolic diseases, 16 related to infectious and immune diseases, and 12 related to cardiovascular and cerebrovascular diseases. The samples were mainly collected in Beijing, Guangzhou, Shanghai and other cosmopolitan cities, where great differences exist in sequencing platforms and methods. The outcome of most studies are based on correlation analysis, which has little practical value in guiding the diagnosis and treatment of clinical diseases. Standardizing sampling methods, sequencing platform and data analysis process, and carrying out multi center parallel research will contribute to data integration and comparative analysis. Moreover, insights into the functional verification and molecular mechanism by using the combination of transcriptomics, proteomics and culturomics will enable the gut microbiota research to better serve the clinical diagnosis and treatment.
Asunto(s)
Microbioma Gastrointestinal , Microbiota , China , Microbioma Gastrointestinal/genética , Humanos , Metagenoma , ARN Ribosómico 16S/genética , Estados UnidosRESUMEN
Carrageenans (CGNs) are widely used in foods and pharmaceuticals although their safety remains controversial. To investigate the effects of CGNs and CGN-degrading bacteria in the human colon, we screened for CGN degradation by human fecal microbiota, and for inflammatory response to CGNs and/or CGN-degrading bacteria in germ free mice. Thin-layer chromatography indicated that high molecular weight (MW) CGNs (≥100 kDa) remained undegraded in the presence of human fecal microbiota, whereas low MW CGNs, i.e., κ-carrageenan oligosaccharides (KCO, ~4.5 kDa) were degraded when exposed to seven of eight human fecal samples, although sulfate groups were not removed during degradation. Bacteroides xylanisolvens and Escherichia coli isolates from fecal samples apparently degraded KCO synergistically, with B. xylanisolvens serving as the primary degrader. Combined treatment of KCO with KCO-degrading bacteria led to greater pro-inflammatory effects in the colon and rectum of germ-free mice than either KCO or bacteria alone. Similarly, p-p38-, CD3-, and CD79a-positive immune cells were more abundant in combined treatment group mice than in either single treatment group. Our study shows that KCO-degrading bacteria and the low MW products of KCO can promote proinflammatory effects in mice, and represent two key markers for evaluating CGN safety in foods or medicines.
Asunto(s)
CarrageninaRESUMEN
A stable intestinal microflora is an essential prerequisite for human health. This study investigated the interaction between Escherichia coli exopolysaccharides (named EPS-m2) and the human gut microbiota (HGM) in vitro. The EPS-m2 was produced by E. coli WM3064 when treated with ceftriaxone. The monosaccharide composition analysis revealed that EPS-m2 is composed of glucuronic acid, glucose, fucose, galactose/N-acetyl glucosamine, arabinose, xylose, and ribose with a molar ratio of approximately 77:44:29:28:2:1:1. The carbohydrates, protein, and uronic acids contents in EPS-m2 was 78.6 ± 0.1%, 4.38 ± 0.11%, and 3.86 ± 0.09%, respectively. In vitro batch fermentation experiments showed that 77% of EPS-m2 could be degraded by human fecal microbiota after 72 h of fermentation. In reverse, 16S rRNA gene sequencing analysis showed that EPS-m2 increased the abundance of Alistipes, Acinetobacter, Alloprevotella, Howardella, and Oxalobacter; GC detection illustrated that EPS-m2 enhanced the production of SCFAs. These findings indicated that EPS-m2 supplementation could regulate the HGM and might facilitate modulation of human health.
RESUMEN
Bifidobacteria are typical commensals inhabiting the human intestine and are beneficial to the host because of their probiotic properties. One of the risks concerning probiotics is the potential of introducing antibiotic resistance genes (ARGs) to the host gut pathogens. This study was aimed to depict the general antibiotic resistance characteristics of the genus Bifidobacterium by combining the reported phenotype dataset and in silico genotype prediction. Bifidobacteria were mostly reported to be sensitive to beta-lactams, glycopeptides, chloramphenicol, and rifampicin, but resistant to aminoglycosides, polypeptides, quinolones, and mupirocin. Generally, the resistance phenotypes to erythromycin, tetracycline, fusidic acid, metronidazole, clindamycin, and trimethoprim were variable. Besides cmX and tetQ, characterized in bifidobacterial resident plasmids, 3520 putative ARGs were identified from 831 bifidobacterial genomes through BLASTP search. The identified ARGs matched thirty-eight reference ARGs, four of which seemed to be mutant housekeeping genes. The two high-abundant ARGs, tetW and ermX, were found to have different distribution traits. The predicted ARGs reasonably explained most of the corresponding resistant phenotypes in the published literature.
Asunto(s)
Antibacterianos , Bifidobacterium , Antibacterianos/farmacología , Bifidobacterium/genética , Simulación por Computador , Farmacorresistencia Microbiana , Genes Bacterianos , Genotipo , Humanos , FenotipoRESUMEN
Statins, a class of drugs that can effectively remove cholesterol from serum, are used to regulate plasma total cholesterol and reduce the risk of cardiovascular diseases, but it is still unclear whether the drug are modulated by gut microbiota or the structures of gut microbiota are shaped by statins. We investigated the interactions between statins and the human gut microbiota during the in vitro fermentation process by 16S rRNA gene sequencing, gas chromatography (GC), and high-performance liquid chromatography (HPLC) analyses. The presence of fluvastatin (FLU2) specifically promoted the growth of Escherichia/Shigella, Ruminococcaceae UCG 014, and Sutterella. However, the composition of the gut bacterial microbiota remained relatively static in samples treated with rosuvastatin (ROS), simvastatin (SIM), and atorvastatin (ATO). The PICRUSt program predicted moderate differences in the functional categories related to the biosynthesis of other secondary metabolites, cellular processes and signaling, and signal transduction in the FLU2 fermentation samples. Our study revealed substantial variation in the structure and function of microbiomes from the FLU2-treated samples. In addition, short-chain fatty acids (SCFAs) were also significantly decreased in FLU2-treated samples compared with the samples treated with other stains. Statins can be degraded by the human gut microbiota in vitro, and the degradation rate was approximately 7%-30% and 19%-48% after fermentation was allowed to proceed for 24 h and 48 h, respectively. Generally, FLU2 could largely shape the composition and function of human gut microbiota, which resulted in changes in the production of SCFAs. In turn, all statins could be degraded or modified by the gut microbiota. Our study paves the way for elucidating statin-gut microbiota interactions in vitro towards the improvement of the host health and personalized medicine.
Asunto(s)
Bacterias/efectos de los fármacos , Microbioma Gastrointestinal/efectos de los fármacos , Microbiota/efectos de los fármacos , Adolescente , Adulto , Bacterias/genética , Enfermedades Cardiovasculares/tratamiento farmacológico , Ácidos Grasos Volátiles/genética , Heces/microbiología , Femenino , Fermentación/efectos de los fármacos , Fermentación/genética , Microbioma Gastrointestinal/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Masculino , Microbiota/genética , ARN Ribosómico 16S/genética , Adulto JovenRESUMEN
Segmented filamentous bacteria (SFB) are well known for their functions in the immunoregulation of hosts including the promotion of Th17 cell differentiation, B cell maturation, and immune system development. However, most analyses of SFB have focused on animal models, and thus, investigation of SFB prevalence in humans and their roles in human immunoregulation and health is needed. Although little is known overall of SFB prevalence in humans, they are characteristically abundant in animals during weaning. In this study, SFB-like bacteria were detected in ileal lavage samples from human children that were aged between 1 to 17 years old by scanning electron microscopy (SEM) analysis, and their insertion into the mucosa was also observed. In addition, the expression of SFB flagellin at the human bacterial interface was observed by immunohistochemistry (IHC) and western blot. Moreover, two pairs of primers specific for SFB, but targeting different genes, were used to detect SFB in human intestinal lavage samples. These analyses indicated that SFB were present in over 50% of patient ileal samples independent of age. High-throughput gene sequencing indicated that different SFB strains were detected among samples. Between nine and 23 SFB flagellin gene operational taxonomic units were identified. In addition to evaluating the prevalence of SFB in human samples, correlations between SFB presence and chief complaints of clinical symptoms were evaluated, as well as the relationship between SFB and patient serum immunoglobulin concentrations. SFB prevalence was significantly higher in hematochezia patients (68%) than in abdominal pain (56.10%) and diarrhea (43.75%) patients. Furthermore, the concentrations of serum IgA, IgM, and IgE, were similar between SFB-positive and SFB-negative patient groups, although IgG concentrations were significantly higher in the SFB-negative group.
Asunto(s)
Bacterias/aislamiento & purificación , Microbioma Gastrointestinal , Íleon/microbiología , Adolescente , Bacterias/clasificación , Niño , Preescolar , China , Femenino , Flagelina/análisis , Humanos , Íleon/ultraestructura , Lactante , Masculino , Microscopía Electrónica de RastreoRESUMEN
In this study, an exopolysaccharide (EPS) named EPS-RB was produced when the gene cluster ycjD-fabI-yciW-rnb were overexpressed in E. coli. Monosaccharide composition analysis revealed that EPS-RB is a novel EPS that consisted of L-fucose, L-arabinose, D-galactose/N-acetyl glucosamine, D-glucose, D-xylose, D-ribose, and D-glucuronic acid, and their molecular ratio was approximately 80:3:53:69:1:2:64. The content of carbohydrates, protein, and uronic acids in EPS-RB was 90.35 ± 1.35%, 2.62 ± 0.05% and 8.16 ± 1.00%, respectively. The interaction between EPS-RB and gut microbiota was investigated using an in vitro batch fermentation system. The results showed that ~96% of EPS-RB can be degraded by human fecal microbiota after 72 h fermentation, but few can be degraded by mouse cecal microbiota. Furthermore, high-throughput sequencing showed that EPS-RB regulates the human gut microbiota. The genera Collinsella, Butyricimonas, and Hafnia were enriched in group VIR (EPS-RB as a carbon source) when compared with group VI (no carbon source) and VIS (starch as a carbon source). Short-chain fatty acids (SCFAs) production analysis showed that their concentration was significantly higher in group VIR than groups VI and VIS after 72 h fermentation. In summary, an EPS-RB in E. coli was isolated and its regulatory function on gut microbiota was analyzed.
Asunto(s)
Escherichia coli/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Polisacáridos Bacterianos/farmacología , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Técnicas de Cultivo Celular por Lotes , Ácidos Grasos Volátiles , Heces/microbiología , Fermentación , Ensayos Analíticos de Alto Rendimiento , Humanos , Ratones , Monosacáridos/análisis , AlmidónRESUMEN
T-helper-17 (Th17) cells are a subset of CD4+ T cells that can produce the cytokine interleukin (IL)-17 and play vital roles in protecting the host from bacterial and fungal infections, especially at the mucosal surface. These are abundant in the small intestinal lamina propria (SILP) and their differentiation are associated with the colonization of the intestinal flora. Segmented filamentous bacteria (SFB) drew the attention of researchers due to their unique ability to drive the accumulation of Th17 cells in the SI LP of mice. Recent work has highlighted that SFB used microbial adhesion-triggered endocytosis (MATE) to transfer SFB antigenic proteins into small intestinal epithelial cells (SI ECs) and modulate host immune homeostasis. However, which components of SFB are involved in this immune response process remains unclear. Here, we examined the roles of SFB flagellins in Th17 cells induction using various techniques, including ELISA, ELISPOT, and RNA-seq in vitro and in vivo. The results show that the immune function of SFB flagellins is similar to SFB, i.e., induces the appearance of CD4+ T helper cells that produce IL-17 and IL-22 (Th17 cells) in the SI LP. Furthermore, treatment of mice with SFB flagellins lead to a significant increase in the expression of genes associated with the IL-17 signaling pathway, such as IL-6, IL-1ß, TNF-α, IL-17A, IL-17F, and IL-22. In addition, SFB flagellins have an intimate relationship with intestinal epithelial cells, influencing the expression of epithelial cell-specific genes such as Nos2, Duox2, Duoxa2, SAA3, Tat, and Lcn2. Thus, we propose that SFB flagellins play a significant role in the involvement of SFB in the induction of intestinal Th17 cells.