Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
Diabetol Metab Syndr ; 16(1): 144, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38951835

RESUMEN

BACKGROUND: This study sought to explore the clinical relevance of the associations of serum levels of advanced glycation end products (AGEs), soluble receptor for AGEs (sRAGE), and thioredoxin-interacting protein (TXNIP) with the renal fat fraction (RFF) in individuals with type 2 diabetes mellitus (T2DM). METHODS: A total of 133 patients with T2DM were enrolled in the study. RFF, which represents the renal fat level, was determined utilizing Dixon magnetic resonance imaging (MRI). Serum levels of AGEs, sRAGE, TXNIP, and other biochemical parameters were measured in patients who fasted. RESULTS: RFF in T2DM patients was positively correlated with the fasting levels of C-peptide (CP), triglycerides (TG), AGEs, TXNIP, and sRAGE (P < 0.05) and negatively correlated with the high-density lipoprotein cholesterol (HDL-c) level (P < 0.05). Pearson's correlation analysis indicated that the serum levels of AGEs, sRAGE, and TXNIP were interrelated and positively correlated (P < 0.05). Then, all patients were assigned to four groups according to the RFF quartile. The HC, CP, TG, AGEs, sRAGE, TXNIP, and DKD percentages tended to increase as the RFF quartiles increased, while the HDL-c level tended to decrease (p for trend < 0.05). Next, multiple linear regression analysis was performed using RFF as the dependent variable. After controlling for covariates related to RFF, the results showed that the serum levels of AGEs and TXNIP were still significantly correlated with RFF. CONCLUSION: These results suggest that circulating AGEs and TXNIP levels may be associated with ectopic fat accumulation in the kidneys of T2DM patients and may serve as indicators of the severity of renal fat deposition.

3.
J Hazard Mater ; 229-230: 128-36, 2012 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-22704776

RESUMEN

Activated carbon modified with different impregnants has been studied for COS removal efficiency under micro-oxygen conditions. Activated carbon modified with Cu(NO(3))(2)-CoPcS-KOH (denoted as Cu-Co-KW) is found to have markedly enhanced adsorption purification ability. In the adsorption purification process, the reaction temperature, oxygen concentration, and relative humidity of the gas are determined to be three crucial factors. A breakthrough of 43.34 mg COS/g adsorbent at 60°Ð¡ and 30% relative humidity with 1.0% oxygen is shown in Cu-Co-KW for removing COS. The structures of the activated carbon samples are characterized using nitrogen adsorption, and their surface chemical structures are analyzed with X-ray photoelectron spectroscopy (XPS). Modification of Cu(NO(3))(2)-CoPcS-KOH appears to improve the COS removal capacity significantly, during which, SO(4)(2-) is presumably formed, strongly adsorbed, and present in the micropores ranging from 0.7 to 1.5 nm. TPD is used to identify the products containing sulfur species on the carbon surface, where SO(2) and COS are detected in the effluent gas generated from exhausted Cu-Co-KW (denoted Cu-Co-KWE). According to the current study results, the activated carbon impregnated with Cu(NO(3))(2)-CoPcS-KOH promises a good candidate for COS adsorbent, with the purified gas meeting requirements for desirable chemical feed stocks.


Asunto(s)
Contaminantes Atmosféricos/química , Contaminación del Aire/prevención & control , Óxidos de Azufre/química , Adsorción , Carbono/química , Cobalto/química , Cobre/química , Humedad , Hidróxidos/química , Compuestos Organometálicos/química , Oxígeno , Espectroscopía de Fotoelectrones , Porosidad , Compuestos de Potasio/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...