Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Entropy (Basel) ; 25(4)2023 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-37190430

RESUMEN

In the Quantum Key Distribution (QKD) network, authentication protocols play a critical role in safeguarding data interactions among users. To keep pace with the rapid advancement of QKD technology, authentication protocols must be capable of processing data at faster speeds. The Secure Hash Algorithm (SHA), which functions as a cryptographic hash function, is a key technology in digital authentication. Irreducible polynomials can serve as characteristic functions of the Linear Feedback Shift Register (LFSR) to rapidly generate pseudo-random sequences, which in turn form the foundation of the hash algorithm. Currently, the most prevalent approach to hardware implementation involves performing block computations and pipeline data processing of the Toeplitz matrix in the Field-Programmable Gate Array (FPGA) to reach a maximum computing rate of 1 Gbps. However, this approach employs a fixed irreducible polynomial as the characteristic polynomial of the LFSR, which results in computational inefficiency as the highest bit of the polynomial restricts the width of parallel processing. Moreover, an attacker could deduce the irreducible polynomials utilized by an algorithm based on the output results, creating a serious concealed security risk. This paper proposes a method to use FPGA to implement variational irreducible polynomials based on a hashing algorithm. Our method achieves an operational rate of 6.8 Gbps by computing equivalent polynomials and updating the Toeplitz matrix with pipeline operations in real-time, which accelerates the authentication protocol while also significantly enhancing its security. Moreover, the optimization of this algorithm can be extended to quantum randomness extraction, leading to a considerable increase in the generation rate of random numbers.

2.
Opt Express ; 31(7): 11292-11307, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37155768

RESUMEN

Randomness, mainly in the form of random numbers, is the fundamental prerequisite for the security of many cryptographic tasks. Quantum randomness can be extracted even if adversaries are fully aware of the protocol and even control the randomness source. However, an adversary can further manipulate the randomness via tailored detector blinding attacks, which are hacking attacks suffered by protocols with trusted detectors. Here, by treating no-click events as valid events, we propose a quantum random number generation protocol that can simultaneously address source vulnerability and ferocious tailored detector blinding attacks. The method can be extended to high-dimensional random number generation. We experimentally demonstrate the ability of our protocol to generate random numbers for two-dimensional measurement with a generation speed of 0.1 bit per pulse.

3.
Sci Bull (Beijing) ; 67(21): 2167-2175, 2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36545992

RESUMEN

The security of quantum key distribution (QKD) is severely threatened by discrepancies between realistic devices and theoretical assumptions. Recently, a significant framework called the reference technique was proposed to provide security against arbitrary source flaws under current technology such as state preparation flaws, side channels caused by mode dependencies, the Trojan horse attacks and pulse correlations. Here, we adopt the reference technique to prove security of an efficient four-phase measurement-device-independent QKD using laser pulses against potential source imperfections. We present a characterization of source flaws and connect them to experiments, together with a finite-key analysis against coherent attacks. In addition, we demonstrate the feasibility of our protocol through a proof-of-principle experimental implementation and achieve a secure key rate of 253 bps with a 20 dB channel loss. Compared with previous QKD protocols with imperfect devices, our study considerably improves both the secure key rate and the transmission distance, and shows application potential in the practical deployment of secure QKD with device imperfections.

4.
Appl Radiat Isot ; 67(2): 277-80, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19095457

RESUMEN

The detector quantum efficiency (DQE) of a linear plastic scintillating fiber (PSF) array coupled with a charge-coupled device (CCD) for hard gamma-ray imaging is studied using a Monte Carlo simulation. The focus is on the energy from a few MeV to about 12 MeV. The excellent characteristic of PSF offers a method to balance the detection efficiency and spatial resolution. Our simulation results indicate that the modulation transfer function (MTF) for different energies become almost the same below the certain frequency and the DQE should be better at lower frequency for imaging lower incident energy. These characteristics suggest that the PSF may be useful for detecting high energy gamma-rays.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...