Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Sci Robot ; 2(2)2017 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-31289767

RESUMEN

Implantable microdevices often have static components rather than moving parts, and exhibit limited biocompatibility. This paper demonstrates a fast manufacturing method which can produce features in biocompatible materials down to tens of microns in scale, with intricate and composite patterns in each layer. By exploiting unique mechanical properties of hydrogels, we developed a "locking mechanism" for precise actuation and movement of freely moving parts, which can provide functions such as valves, manifolds, rotors, pumps, and delivery of payloads. Hydrogel components could be tuned within a wide range of mechanical and diffusive properties, and can be controlled after implantation without a sustained power supply. In a mouse model of osteosarcoma, triggering of release of doxorubicin from the device over ten days showed high treatment efficacy and low toxicity, at one-tenth of a standard systemic chemotherapy dose. Overall, this platform, called "iMEMS", enables development of biocompatible implantable microdevices with a wide range of intricate moving components that can be wirelessly controlled on demand, in a manner that solves issues of device powering and biocompatibility.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...