Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Genes Cells ; 28(8): 539-552, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37249032

RESUMEN

A long-standing assumption in molecular biology posits that the conservation of protein and nucleic acid sequences emphasizes the functional significance of biomolecules. These conserved sequences fold into distinct secondary and tertiary structures, enable highly specific molecular interactions, and regulate complex yet organized molecular processes within living cells. However, recent evidence suggests that biomolecules can also function through primary sequence regions that lack conservation across species or gene families. These regions typically do not form rigid structures, and their inherent flexibility is critical for their functional roles. This review examines the emerging roles and molecular mechanisms of "nondomain biomolecules," whose functions are not easily predicted due to the absence of conserved functional domains. We propose the hypothesis that both domain- and nondomain-type molecules work together to enable flexible and efficient molecular processes within the highly crowded intracellular environment.


Asunto(s)
Proteínas , Proteínas/genética , Secuencia Conservada , Biopolímeros
2.
Sci Rep ; 12(1): 12231, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35851412

RESUMEN

Non-proteinaceous components in membranes regulate membrane protein insertion cooperatively with proteinaceous translocons. An endogenous glycolipid in the Escherichia coli membrane called membrane protein integrase (MPIase) is one such component. Here, we focused on the Sec translocon-independent pathway and examined the mechanisms of MPIase-facilitated protein insertion using physicochemical techniques. We determined the membrane insertion efficiency of a small hydrophobic protein using solid-state nuclear magnetic resonance, which showed good agreement with that determined by the insertion assay using an in vitro translation system. The observed insertion efficiency was strongly correlated with membrane physicochemical properties measured using fluorescence techniques. Diacylglycerol, a trace component of E. coli membrane, reduced the acyl chain mobility in the core region and inhibited the insertion, whereas MPIase restored them. We observed the electrostatic intermolecular interactions between MPIase and the side chain of basic amino acids in the protein, suggesting that the negatively charged pyrophosphate of MPIase attracts the positively charged residues of a protein near the membrane surface, which triggers the insertion. Thus, this study demonstrated the ingenious approach of MPIase to support membrane insertion of proteins by using its unique molecular structure in various ways.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucolípidos/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Canales de Translocación SEC/metabolismo
3.
ACS Chem Biol ; 17(3): 609-618, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35239308

RESUMEN

Inducing newly synthesized proteins to appropriate locations is an indispensable biological function in every organism. Integration of proteins into biomembranes in Escherichia coli is mediated by proteinaceous factors, such as Sec translocons and an insertase YidC. Additionally, a glycolipid named MPIase (membrane protein integrase), composed of a long sugar chain and pyrophospholipid, was proven essential for membrane protein integration. We reported that a synthesized minimal unit of MPIase possessing only one trisaccharide, mini-MPIase-3, involves an essential structure for the integration activity. Here, to elucidate integration mechanisms using MPIase, we analyzed intermolecular interactions of MPIase or its synthetic analogs with a model substrate, the Pf3 coat protein, using physicochemical methods. Surface plasmon resonance (SPR) analyses revealed the importance of a pyrophosphate for affinity to the Pf3 coat protein. Compared with mini-MPIase-3, natural MPIase showed faster association and dissociation due to its long sugar chain despite the slight difference in affinity. To focus on more detailed MPIase substructures, we performed docking simulations and saturation transfer difference-nuclear magnetic resonance. These experiments yielded that the 6-O-acetyl group on glucosamine and the phosphate of MPIase play important roles leading to interactions with the Pf3 coat protein. The high affinity of MPIase to the hydrophobic region and the basic amino acid residues of the protein was suggested by docking simulations and proven experimentally by SPR using protein mutants devoid of target regions. These results demonstrated the direct interactions of MPIase with a substrate protein and revealed detailed mechanisms of membrane protein integration.


Asunto(s)
Proteínas de Escherichia coli , Membrana Celular/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Glucolípidos/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Azúcares
4.
Nat Chem Biol ; 16(7): 756-765, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32284601

RESUMEN

Soluble prion proteins contingently encounter foreign prion aggregates, leading to cross-species prion transmission. However, how its efficiency is regulated by structural fluctuation of the host soluble prion protein remains unsolved. In the present study, through the use of two distantly related yeast prion Sup35 proteins, we found that a specific conformation of a short disordered segment governs interspecies prion transmissibility. Using a multidisciplinary approach including high-resolution NMR and molecular dynamics simulation, we identified critical residues within this segment that allow interspecies prion transmission in vitro and in vivo, by locally altering dynamics and conformation of soluble prion proteins. Remarkably, subtle conformational differences caused by a methylene group between asparagine and glutamine sufficed to change the short segment structure and substantially modulate the cross-seeding activity. Thus, our findings uncover how conformational dynamics of the short segment in the host prion protein impacts cross-species prion transmission. More broadly, our study provides mechanistic insights into cross-seeding between heterologous proteins.


Asunto(s)
Asparagina/química , Glutamina/química , Proteínas Intrínsecamente Desordenadas/química , Factores de Terminación de Péptidos/química , Priones/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Secuencia de Aminoácidos , Asparagina/metabolismo , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glutamina/metabolismo , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Simulación de Dinámica Molecular , Factores de Terminación de Péptidos/genética , Factores de Terminación de Péptidos/metabolismo , Priones/genética , Priones/metabolismo , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
5.
Sci Rep ; 7: 44582, 2017 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-28300173

RESUMEN

Family B DNA polymerases comprise polymerase and 3' ->5' exonuclease domains, and detect a mismatch in a newly synthesized strand to remove it in cooperation with Proliferating cell nuclear antigen (PCNA), which encircles the DNA to provide a molecular platform for efficient protein-protein and protein-DNA interactions during DNA replication and repair. Once the repair is completed, the enzyme must stop the exonucleolytic process and switch to the polymerase mode. However, the cue to stop the degradation is unclear. We constructed several PCNA mutants and found that the exonuclease reaction was enhanced in the mutants lacking the conserved basic patch, located on the inside surface of PCNA. These mutants may mimic the Pol/PCNA complex processing the mismatched DNA, in which PCNA cannot interact rigidly with the irregularly distributed phosphate groups outside the dsDNA. Indeed, the exonuclease reaction with the wild type PCNA was facilitated by mismatched DNA substrates. PCNA may suppress the exonuclease reaction after the removal of the mismatched nucleotide. PCNA seems to act as a "brake" that stops the exonuclease mode of the DNA polymerase after the removal of a mismatched nucleotide from the substrate DNA, for the prompt switch to the DNA polymerase mode.


Asunto(s)
ADN Polimerasa beta/química , Complejos Multiproteicos/química , Antígeno Nuclear de Célula en Proliferación/química , Secuencia de Aminoácidos/genética , Archaea/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/genética , ADN/química , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa beta/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Complejos Multiproteicos/genética , Antígeno Nuclear de Célula en Proliferación/genética
6.
Sci Rep ; 5: 16341, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26549015

RESUMEN

Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/química , Conformación Proteica , Mapas de Interacción de Proteínas , Proteínas/química , Sustitución de Aminoácidos , Biología Computacional/métodos , Bases de Datos de Proteínas , Humanos , Unión Proteica , Mapeo de Interacción de Proteínas
7.
Wiley Interdiscip Rev Comput Mol Sci ; 5(4): 310-323, 2015 07.
Artículo en Inglés | MEDLINE | ID: mdl-26753008

RESUMEN

GENESIS (Generalized-Ensemble Simulation System) is a new software package for molecular dynamics (MD) simulations of macromolecules. It has two MD simulators, called ATDYN and SPDYN. ATDYN is parallelized based on an atomic decomposition algorithm for the simulations of all-atom force-field models as well as coarse-grained Go-like models. SPDYN is highly parallelized based on a domain decomposition scheme, allowing large-scale MD simulations on supercomputers. Hybrid schemes combining OpenMP and MPI are used in both simulators to target modern multicore computer architectures. Key advantages of GENESIS are (1) the highly parallel performance of SPDYN for very large biological systems consisting of more than one million atoms and (2) the availability of various REMD algorithms (T-REMD, REUS, multi-dimensional REMD for both all-atom and Go-like models under the NVT, NPT, NPAT, and NPγT ensembles). The former is achieved by a combination of the midpoint cell method and the efficient three-dimensional Fast Fourier Transform algorithm, where the domain decomposition space is shared in real-space and reciprocal-space calculations. Other features in SPDYN, such as avoiding concurrent memory access, reducing communication times, and usage of parallel input/output files, also contribute to the performance. We show the REMD simulation results of a mixed (POPC/DMPC) lipid bilayer as a real application using GENESIS. GENESIS is released as free software under the GPLv2 licence and can be easily modified for the development of new algorithms and molecular models. WIREs Comput Mol Sci 2015, 5:310-323. doi: 10.1002/wcms.1220.

8.
Adv Exp Med Biol ; 805: 1-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24446355

RESUMEN

In the protein folding problem, conventional simulations in physical statistical mechanical ensembles, such as the canonical ensemble with fixed temperature, face a great difficulty. This is because there exist a huge number of local-minimum-energy states in the system and the conventional simulations tend to get trapped in these states, giving wrong results. Generalized-ensemble algorithms are based on artificial unphysical ensembles and overcome the above difficulty by performing random walks in potential energy, volume, and other physical quantities or their corresponding conjugate parameters such as temperature, pressure, etc. The advantage of generalized-ensemble simulations lies in the fact that they not only avoid getting trapped in states of energy local minima but also allows the calculations of physical quantities as functions of temperature or other parameters from a single simulation run. In this article we review the generalized-ensemble algorithms. Four examples, multicanonical algorithm, replica-exchange method, replica-exchange multicanonical algorithm, and multicanonical replica-exchange method, are described in detail. Examples of their applications to the protein folding problem are presented.


Asunto(s)
Algoritmos , Proteínas Bacterianas/química , Proteínas de Microfilamentos/química , Modelos Moleculares , Fragmentos de Péptidos/química , Ribonucleasa Pancreática/química , Agua/química , Animales , Pollos/metabolismo , Simulación por Computador , Humanos , Pliegue de Proteína , Estructura Secundaria de Proteína , Streptococcus/química , Temperatura , Termodinámica
9.
Proteins ; 82(6): 933-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24214490

RESUMEN

We have investigated effects of salt ions on folding events of a helical miniprotein chicken villin headpiece subdomain HP36. Low concentrations of ions alter electrostatic interactions between charged groups of a protein and can change the populations of conformers. Here, we compare two data sets of folding simulations of HP36 in explicit water solvent with or without ions. For efficient sampling of the conformational space of HP36, the multicanonical replica-exchange molecular dynamics method was employed. Our analyses suggest that salt alters salt-bridging nature of the protein at later stages of folding at room temperature. Especially, more nonnative, nonlocal salt bridges are formed at near-native conformations in pure water. Our analyses also show that such salt-bridge formation hinders the fully native hydrophobic-core packing at the final stages of folding.


Asunto(s)
Proteínas Aviares/química , Simulación de Dinámica Molecular , Proteínas de Neurofilamentos/química , Fragmentos de Péptidos/química , Cloruro de Potasio/química , Pliegue de Proteína , Secuencia de Aminoácidos , Animales , Pollos , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Estructura Secundaria de Proteína , Termodinámica
10.
Biophys J ; 99(5): 1637-44, 2010 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-20816077

RESUMEN

Despite its small size, chicken villin headpiece subdomain HP36 folds into the native structure with a stable hydrophobic core within several microseconds. How such a small protein keeps up its conformational stability and fast folding in solution is an important issue for understanding molecular mechanisms of protein folding. In this study, we performed multicanonical replica-exchange simulations of HP36 in explicit water, starting from a fully extended conformation. We observed at least five events of HP36 folding into nativelike conformations. The smallest backbone root mean-square deviation from the crystal structure was 1.1 A. In the nativelike conformations, the stably formed hydrophobic core was fully dehydrated. Statistical analyses of the simulation trajectories show the following sequential events in folding of HP36: 1), Helix 3 is formed at the earliest stage; 2), the backbone and the side chains near the loop between Helices 2 and 3 take nativelike conformations; and 3), the side-chain packing at the hydrophobic core and the dehydration of the core side chains take place simultaneously at the later stage of folding. This sequence suggests that the initial folding nucleus is not necessarily the same as the hydrophobic core, consistent with a recent experimental phi-value analysis.


Asunto(s)
Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Proteínas de Neurofilamentos/química , Fragmentos de Péptidos/química , Pliegue de Proteína , Agua/química , Secuencia de Aminoácidos , Animales , Datos de Secuencia Molecular , Conformación Proteica , Temperatura , Factores de Tiempo
11.
Proteins ; 66(4): 846-59, 2007 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-17173285

RESUMEN

G-peptide is a 16-residue peptide of the C-terminal end of streptococcal protein G B1 domain, which is known to fold into a specific beta-hairpin within 6 micros. Here, we study molecular mechanism on the stability and folding of G-peptide by performing a multicanonical replica-exchange (MUCAREM) molecular dynamics simulation with explicit solvent. Unlike the preceding simulations of the same peptide, the simulation was started from an unfolded conformation without any experimental information on the native conformation. In the 278-ns trajectory, we observed three independent folding events. Thus MUCAREM can be estimated to accelerate the folding reaction more than 60 times than the conventional molecular dynamics simulations. The free-energy landscape of the peptide at room temperature shows that there are three essential subevents in the folding pathway to construct the native-like beta-hairpin conformation: (i) a hydrophobic collapse of the peptide occurs with the side-chain contacts between Tyr45 and Phe52, (ii) then, the native-like turn is formed accompanying with the hydrogen-bonded network around the turn region, and (iii) finally, the rest of the backbone hydrogen bonds are formed. A number of stable native hydrogen bonds are formed cooperatively during the second stage, suggesting the importance of the formation of the specific turn structure. This is also supported by the accumulation of the nonnative conformations only with the hydrophobic cluster around Tyr45 and Phe52. These simulation results are consistent with high phi-values of the turn region observed by experiment.


Asunto(s)
Péptidos/química , Péptidos/metabolismo , Pliegue de Proteína , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Biología Computacional , Simulación por Computador , Enlace de Hidrógeno , Lisina/química , Lisina/metabolismo , Modelos Moleculares , Desnaturalización Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Temperatura
12.
Biochemistry ; 45(39): 11752-61, 2006 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-17002276

RESUMEN

Phospholamban is a 52-residue integral membrane protein that regulates the activity of the sarcoplasmic reticulum calcium pump in cardiac muscle. Its inhibitory action is relieved when phospholamban is phosphorylated at Ser16 by cAMP-dependent protein kinase. To computationally explore all possible conformations of the phosphorylated form, and thereby to understand the structural effects of phosphorylation, replica-exchange molecular dynamics (REMD) was applied to the cytoplasmic domain that includes Ser16. The simulations showed that (i) without phosphorylation, the region from Lys3 to Ser16 takes all alpha-helical conformations; (ii) when phosphorylated, the alpha-helix is partially unwound in the C-terminal part (from Ser10 to Ala15) resulting in less extended conformations; (iii) the phosphate at Ser16 forms salt bridges with Arg9, Arg13, and/or Arg14; and (iv) the salt bridges with Arg13 and Arg14 distort the alpha-helix and induce unwinding of the C-terminal part. We then applied conventional all-atom molecular dynamics simulations to the full-length phospholamban in the phospholipid bilayer. The results were consistent with those obtained with REMD simulations, suggesting that the transmembrane part of phospholamban and the lipid bilayer itself have only minor effects on the conformational changes in the cytoplasmic domain. The distortions caused by the salt bridges involving the phosphate at Ser16 readily explain the relief of the inhibitory effect of phospholamban by phosphorylation, as they will substantially reduce the population of all helical conformations, which are presumably required for the binding to the calcium pump. This will also be the mechanism for releasing the phosphorylated phospholamban from kinase.


Asunto(s)
Proteínas de Unión al Calcio/química , Membrana Dobles de Lípidos/química , Modelos Moleculares , Procesamiento Proteico-Postraduccional , Serina/química , Proteínas de Unión al Calcio/metabolismo , ATPasas Transportadoras de Calcio/química , ATPasas Transportadoras de Calcio/metabolismo , Simulación por Computador , Humanos , Membrana Dobles de Lípidos/metabolismo , Fosforilación , Unión Proteica , Estructura Secundaria de Proteína , Serina/metabolismo
13.
FEBS Lett ; 579(24): 5425-9, 2005 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-16198346

RESUMEN

We investigate in detail the structural properties of the monomeric peptide fragment that corresponds to residues 21-31 of beta(2)-microglobulin. As a first step towards the understanding of the mechanism of the amyloid formation, we have performed a replica-exchange molecular dynamics simulation of this peptide with explicit water molecules. We analyze various structural properties as functions of temperature. Although the corresponding part of the native protein is a fully extended beta-strand, our results show that beta-hairpin structures are formed with high frequency around 310 K. We conjecture that this beta-hairpin formation is closely related to the amyloid fibrillogenesis.


Asunto(s)
Amiloide/biosíntesis , Fragmentos de Péptidos/química , Microglobulina beta-2/química , Conformación Proteica
14.
J Mol Biol ; 341(2): 589-604, 2004 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-15276846

RESUMEN

To investigate whether the structure partially formed in the molten globule folding intermediate of goat alpha-lactalbumin is further organized in the transition state of folding, we constructed a number of mutant proteins and performed Phi-value analysis on them. For this purpose, we measured the equilibrium unfolding transitions and kinetic refolding and unfolding reactions of the mutants using equilibrium and stopped-flow kinetic circular dichroism techniques. The results show that the mutants with mutations located in the A-helix (V8A, L12A), the B-helix (V27A), the beta-domain (L52A, W60A), the C-helix (K93A, L96A), the C-D loop (Y103F), the D-helix (L105A, L110A), and the C-terminal 3(10)-helix (W118F), have low Phi-values, less than 0.2. On the other hand, D87N, which is located on the Ca(2+)-binding site, has a high Phi-value, 0.91, indicating that tight packing of the side-chain around Asp87 occurs in the transition state. One beta-domain mutant (I55V) and three C-helix mutants (I89V, V90A, and I95V) demonstrated intermediate Phi-values, between 0.4 and 0.7. These results indicate that the folding nucleus in the transition state of goat alpha-LA is not extensively distributed over the alpha-domain of the protein, but very localized in a region that contains the Ca(2+)-binding site and the interface between the C-helix and the beta-domain. This is apparently in contrast with the fact that the molten globule state of alpha-lactalbumin has a partially formed structure inside the alpha-domain. It is concluded that the specific docking of the alpha and beta-domains at a domain interface is necessary for this protein to organize its native structure from the molten globule intermediate.


Asunto(s)
Lactalbúmina/química , Pliegue de Proteína , Animales , Dicroismo Circular , Cabras , Modelos Moleculares , Desnaturalización Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...